![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-symrels | Structured version Visualization version GIF version |
Description: Define the class of
symmetric relations. For sets, being an element of
the class of symmetric relations is equivalent to satisfying the symmetric
relation predicate, cf. elsymrelsrel 34790. Alternate definitions are
dfsymrels2 34778, dfsymrels3 34779, dfsymrels4 34780 and dfsymrels5 34781.
This definition is similar to the definitions of the classes of reflexive (df-refrels 34748) and transitive (df-trrels 34806) relations. (Contributed by Peter Mazsa, 7-Jul-2019.) |
Ref | Expression |
---|---|
df-symrels | ⊢ SymRels = ( Syms ∩ Rels ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csymrels 34473 | . 2 class SymRels | |
2 | csyms 34472 | . . 3 class Syms | |
3 | crels 34464 | . . 3 class Rels | |
4 | 2, 3 | cin 3767 | . 2 class ( Syms ∩ Rels ) |
5 | 1, 4 | wceq 1653 | 1 wff SymRels = ( Syms ∩ Rels ) |
Colors of variables: wff setvar class |
This definition is referenced by: dfsymrels2 34778 |
Copyright terms: Public domain | W3C validator |