![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-symrels | Structured version Visualization version GIF version |
Description: Define the class of
symmetric relations. For sets, being an element of
the class of symmetric relations is equivalent to satisfying the symmetric
relation predicate, see elsymrelsrel 37938. Alternate definitions are
dfsymrels2 37926, dfsymrels3 37927, dfsymrels4 37928 and dfsymrels5 37929.
This definition is similar to the definitions of the classes of reflexive (df-refrels 37892) and transitive (df-trrels 37954) relations. (Contributed by Peter Mazsa, 7-Jul-2019.) |
Ref | Expression |
---|---|
df-symrels | ⊢ SymRels = ( Syms ∩ Rels ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csymrels 37565 | . 2 class SymRels | |
2 | csyms 37564 | . . 3 class Syms | |
3 | crels 37556 | . . 3 class Rels | |
4 | 2, 3 | cin 3942 | . 2 class ( Syms ∩ Rels ) |
5 | 1, 4 | wceq 1533 | 1 wff SymRels = ( Syms ∩ Rels ) |
Colors of variables: wff setvar class |
This definition is referenced by: dfsymrels2 37926 |
Copyright terms: Public domain | W3C validator |