| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-symrels | Structured version Visualization version GIF version | ||
| Description: Define the class of
symmetric relations. For sets, being an element of
the class of symmetric relations is equivalent to satisfying the symmetric
relation predicate, see elsymrelsrel 38555. Alternate definitions are
dfsymrels2 38543, dfsymrels3 38544, dfsymrels4 38545 and dfsymrels5 38546.
This definition is similar to the definitions of the classes of reflexive (df-refrels 38509) and transitive (df-trrels 38571) relations. (Contributed by Peter Mazsa, 7-Jul-2019.) |
| Ref | Expression |
|---|---|
| df-symrels | ⊢ SymRels = ( Syms ∩ Rels ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csymrels 38187 | . 2 class SymRels | |
| 2 | csyms 38186 | . . 3 class Syms | |
| 3 | crels 38178 | . . 3 class Rels | |
| 4 | 2, 3 | cin 3916 | . 2 class ( Syms ∩ Rels ) |
| 5 | 1, 4 | wceq 1540 | 1 wff SymRels = ( Syms ∩ Rels ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfsymrels2 38543 |
| Copyright terms: Public domain | W3C validator |