| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-symrels | Structured version Visualization version GIF version | ||
| Description: Define the class of
symmetric relations. For sets, being an element of
the class of symmetric relations is equivalent to satisfying the symmetric
relation predicate, see elsymrelsrel 38676. Alternate definitions are
dfsymrels2 38660, dfsymrels3 38661, dfsymrels4 38666 and dfsymrels5 38667.
This definition is similar to the definitions of the classes of reflexive (df-refrels 38626) and transitive (df-trrels 38692) relations. (Contributed by Peter Mazsa, 7-Jul-2019.) |
| Ref | Expression |
|---|---|
| df-symrels | ⊢ SymRels = ( Syms ∩ Rels ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csymrels 38256 | . 2 class SymRels | |
| 2 | csyms 38255 | . . 3 class Syms | |
| 3 | crels 38247 | . . 3 class Rels | |
| 4 | 2, 3 | cin 3897 | . 2 class ( Syms ∩ Rels ) |
| 5 | 1, 4 | wceq 1541 | 1 wff SymRels = ( Syms ∩ Rels ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfsymrels2 38660 |
| Copyright terms: Public domain | W3C validator |