![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-symrels | Structured version Visualization version GIF version |
Description: Define the class of
symmetric relations. For sets, being an element of
the class of symmetric relations is equivalent to satisfying the symmetric
relation predicate, see elsymrelsrel 38513. Alternate definitions are
dfsymrels2 38501, dfsymrels3 38502, dfsymrels4 38503 and dfsymrels5 38504.
This definition is similar to the definitions of the classes of reflexive (df-refrels 38467) and transitive (df-trrels 38529) relations. (Contributed by Peter Mazsa, 7-Jul-2019.) |
Ref | Expression |
---|---|
df-symrels | ⊢ SymRels = ( Syms ∩ Rels ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csymrels 38146 | . 2 class SymRels | |
2 | csyms 38145 | . . 3 class Syms | |
3 | crels 38137 | . . 3 class Rels | |
4 | 2, 3 | cin 3975 | . 2 class ( Syms ∩ Rels ) |
5 | 1, 4 | wceq 1537 | 1 wff SymRels = ( Syms ∩ Rels ) |
Colors of variables: wff setvar class |
This definition is referenced by: dfsymrels2 38501 |
Copyright terms: Public domain | W3C validator |