| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-symrels | Structured version Visualization version GIF version | ||
| Description: Define the class of
symmetric relations. For sets, being an element of
the class of symmetric relations is equivalent to satisfying the symmetric
relation predicate, see elsymrelsrel 38548. Alternate definitions are
dfsymrels2 38536, dfsymrels3 38537, dfsymrels4 38538 and dfsymrels5 38539.
This definition is similar to the definitions of the classes of reflexive (df-refrels 38502) and transitive (df-trrels 38564) relations. (Contributed by Peter Mazsa, 7-Jul-2019.) |
| Ref | Expression |
|---|---|
| df-symrels | ⊢ SymRels = ( Syms ∩ Rels ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csymrels 38180 | . 2 class SymRels | |
| 2 | csyms 38179 | . . 3 class Syms | |
| 3 | crels 38171 | . . 3 class Rels | |
| 4 | 2, 3 | cin 3913 | . 2 class ( Syms ∩ Rels ) |
| 5 | 1, 4 | wceq 1540 | 1 wff SymRels = ( Syms ∩ Rels ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfsymrels2 38536 |
| Copyright terms: Public domain | W3C validator |