| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-symrels | Structured version Visualization version GIF version | ||
| Description: Define the class of
symmetric relations. For sets, being an element of
the class of symmetric relations is equivalent to satisfying the symmetric
relation predicate, see elsymrelsrel 38600. Alternate definitions are
dfsymrels2 38588, dfsymrels3 38589, dfsymrels4 38590 and dfsymrels5 38591.
This definition is similar to the definitions of the classes of reflexive (df-refrels 38554) and transitive (df-trrels 38616) relations. (Contributed by Peter Mazsa, 7-Jul-2019.) |
| Ref | Expression |
|---|---|
| df-symrels | ⊢ SymRels = ( Syms ∩ Rels ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csymrels 38232 | . 2 class SymRels | |
| 2 | csyms 38231 | . . 3 class Syms | |
| 3 | crels 38223 | . . 3 class Rels | |
| 4 | 2, 3 | cin 3901 | . 2 class ( Syms ∩ Rels ) |
| 5 | 1, 4 | wceq 1541 | 1 wff SymRels = ( Syms ∩ Rels ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfsymrels2 38588 |
| Copyright terms: Public domain | W3C validator |