Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-symrels | Structured version Visualization version GIF version |
Description: Define the class of
symmetric relations. For sets, being an element of
the class of symmetric relations is equivalent to satisfying the symmetric
relation predicate, see elsymrelsrel 36671. Alternate definitions are
dfsymrels2 36659, dfsymrels3 36660, dfsymrels4 36661 and dfsymrels5 36662.
This definition is similar to the definitions of the classes of reflexive (df-refrels 36629) and transitive (df-trrels 36687) relations. (Contributed by Peter Mazsa, 7-Jul-2019.) |
Ref | Expression |
---|---|
df-symrels | ⊢ SymRels = ( Syms ∩ Rels ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csymrels 36344 | . 2 class SymRels | |
2 | csyms 36343 | . . 3 class Syms | |
3 | crels 36335 | . . 3 class Rels | |
4 | 2, 3 | cin 3886 | . 2 class ( Syms ∩ Rels ) |
5 | 1, 4 | wceq 1539 | 1 wff SymRels = ( Syms ∩ Rels ) |
Colors of variables: wff setvar class |
This definition is referenced by: dfsymrels2 36659 |
Copyright terms: Public domain | W3C validator |