![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-symrels | Structured version Visualization version GIF version |
Description: Define the class of
symmetric relations. For sets, being an element of
the class of symmetric relations is equivalent to satisfying the symmetric
relation predicate, see elsymrelsrel 38061. Alternate definitions are
dfsymrels2 38049, dfsymrels3 38050, dfsymrels4 38051 and dfsymrels5 38052.
This definition is similar to the definitions of the classes of reflexive (df-refrels 38015) and transitive (df-trrels 38077) relations. (Contributed by Peter Mazsa, 7-Jul-2019.) |
Ref | Expression |
---|---|
df-symrels | ⊢ SymRels = ( Syms ∩ Rels ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csymrels 37692 | . 2 class SymRels | |
2 | csyms 37691 | . . 3 class Syms | |
3 | crels 37683 | . . 3 class Rels | |
4 | 2, 3 | cin 3948 | . 2 class ( Syms ∩ Rels ) |
5 | 1, 4 | wceq 1533 | 1 wff SymRels = ( Syms ∩ Rels ) |
Colors of variables: wff setvar class |
This definition is referenced by: dfsymrels2 38049 |
Copyright terms: Public domain | W3C validator |