![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-symrels | Structured version Visualization version GIF version |
Description: Define the class of
symmetric relations. For sets, being an element of
the class of symmetric relations is equivalent to satisfying the symmetric
relation predicate, see elsymrelsrel 37422. Alternate definitions are
dfsymrels2 37410, dfsymrels3 37411, dfsymrels4 37412 and dfsymrels5 37413.
This definition is similar to the definitions of the classes of reflexive (df-refrels 37376) and transitive (df-trrels 37438) relations. (Contributed by Peter Mazsa, 7-Jul-2019.) |
Ref | Expression |
---|---|
df-symrels | ⊢ SymRels = ( Syms ∩ Rels ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csymrels 37049 | . 2 class SymRels | |
2 | csyms 37048 | . . 3 class Syms | |
3 | crels 37040 | . . 3 class Rels | |
4 | 2, 3 | cin 3947 | . 2 class ( Syms ∩ Rels ) |
5 | 1, 4 | wceq 1541 | 1 wff SymRels = ( Syms ∩ Rels ) |
Colors of variables: wff setvar class |
This definition is referenced by: dfsymrels2 37410 |
Copyright terms: Public domain | W3C validator |