| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-symrels | Structured version Visualization version GIF version | ||
| Description: Define the class of
symmetric relations. For sets, being an element of
the class of symmetric relations is equivalent to satisfying the symmetric
relation predicate, see elsymrelsrel 38575. Alternate definitions are
dfsymrels2 38563, dfsymrels3 38564, dfsymrels4 38565 and dfsymrels5 38566.
This definition is similar to the definitions of the classes of reflexive (df-refrels 38529) and transitive (df-trrels 38591) relations. (Contributed by Peter Mazsa, 7-Jul-2019.) |
| Ref | Expression |
|---|---|
| df-symrels | ⊢ SymRels = ( Syms ∩ Rels ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csymrels 38210 | . 2 class SymRels | |
| 2 | csyms 38209 | . . 3 class Syms | |
| 3 | crels 38201 | . . 3 class Rels | |
| 4 | 2, 3 | cin 3925 | . 2 class ( Syms ∩ Rels ) |
| 5 | 1, 4 | wceq 1540 | 1 wff SymRels = ( Syms ∩ Rels ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfsymrels2 38563 |
| Copyright terms: Public domain | W3C validator |