![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-symrels | Structured version Visualization version GIF version |
Description: Define the class of
symmetric relations. For sets, being an element of
the class of symmetric relations is equivalent to satisfying the symmetric
relation predicate, see elsymrelsrel 38539. Alternate definitions are
dfsymrels2 38527, dfsymrels3 38528, dfsymrels4 38529 and dfsymrels5 38530.
This definition is similar to the definitions of the classes of reflexive (df-refrels 38493) and transitive (df-trrels 38555) relations. (Contributed by Peter Mazsa, 7-Jul-2019.) |
Ref | Expression |
---|---|
df-symrels | ⊢ SymRels = ( Syms ∩ Rels ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csymrels 38173 | . 2 class SymRels | |
2 | csyms 38172 | . . 3 class Syms | |
3 | crels 38164 | . . 3 class Rels | |
4 | 2, 3 | cin 3962 | . 2 class ( Syms ∩ Rels ) |
5 | 1, 4 | wceq 1537 | 1 wff SymRels = ( Syms ∩ Rels ) |
Colors of variables: wff setvar class |
This definition is referenced by: dfsymrels2 38527 |
Copyright terms: Public domain | W3C validator |