Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-symrels | Structured version Visualization version GIF version |
Description: Define the class of
symmetric relations. For sets, being an element of
the class of symmetric relations is equivalent to satisfying the symmetric
relation predicate, see elsymrelsrel 36598. Alternate definitions are
dfsymrels2 36586, dfsymrels3 36587, dfsymrels4 36588 and dfsymrels5 36589.
This definition is similar to the definitions of the classes of reflexive (df-refrels 36556) and transitive (df-trrels 36614) relations. (Contributed by Peter Mazsa, 7-Jul-2019.) |
Ref | Expression |
---|---|
df-symrels | ⊢ SymRels = ( Syms ∩ Rels ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csymrels 36271 | . 2 class SymRels | |
2 | csyms 36270 | . . 3 class Syms | |
3 | crels 36262 | . . 3 class Rels | |
4 | 2, 3 | cin 3882 | . 2 class ( Syms ∩ Rels ) |
5 | 1, 4 | wceq 1539 | 1 wff SymRels = ( Syms ∩ Rels ) |
Colors of variables: wff setvar class |
This definition is referenced by: dfsymrels2 36586 |
Copyright terms: Public domain | W3C validator |