| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-symrels | Structured version Visualization version GIF version | ||
| Description: Define the class of
symmetric relations. For sets, being an element of
the class of symmetric relations is equivalent to satisfying the symmetric
relation predicate, see elsymrelsrel 38536. Alternate definitions are
dfsymrels2 38524, dfsymrels3 38525, dfsymrels4 38526 and dfsymrels5 38527.
This definition is similar to the definitions of the classes of reflexive (df-refrels 38490) and transitive (df-trrels 38552) relations. (Contributed by Peter Mazsa, 7-Jul-2019.) |
| Ref | Expression |
|---|---|
| df-symrels | ⊢ SymRels = ( Syms ∩ Rels ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csymrels 38168 | . 2 class SymRels | |
| 2 | csyms 38167 | . . 3 class Syms | |
| 3 | crels 38159 | . . 3 class Rels | |
| 4 | 2, 3 | cin 3904 | . 2 class ( Syms ∩ Rels ) |
| 5 | 1, 4 | wceq 1540 | 1 wff SymRels = ( Syms ∩ Rels ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfsymrels2 38524 |
| Copyright terms: Public domain | W3C validator |