![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfsymrels2 | Structured version Visualization version GIF version |
Description: Alternate definition of the class of symmetric relations. Cf. the comment of dfrefrels2 38469. (Contributed by Peter Mazsa, 20-Jul-2019.) |
Ref | Expression |
---|---|
dfsymrels2 | ⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 ⊆ 𝑟} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-symrels 38499 | . 2 ⊢ SymRels = ( Syms ∩ Rels ) | |
2 | df-syms 38498 | . 2 ⊢ Syms = {𝑟 ∣ ◡(𝑟 ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟))} | |
3 | inex1g 5337 | . . . . 5 ⊢ (𝑟 ∈ V → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V) | |
4 | 3 | elv 3493 | . . . 4 ⊢ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V |
5 | brssr 38457 | . . . 4 ⊢ ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V → (◡(𝑟 ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ◡(𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)))) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ (◡(𝑟 ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ◡(𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) |
7 | elrels6 38446 | . . . . . . 7 ⊢ (𝑟 ∈ V → (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)) | |
8 | 7 | elv 3493 | . . . . . 6 ⊢ (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟) |
9 | 8 | biimpi 216 | . . . . 5 ⊢ (𝑟 ∈ Rels → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟) |
10 | 9 | cnveqd 5900 | . . . 4 ⊢ (𝑟 ∈ Rels → ◡(𝑟 ∩ (dom 𝑟 × ran 𝑟)) = ◡𝑟) |
11 | 10, 9 | sseq12d 4042 | . . 3 ⊢ (𝑟 ∈ Rels → (◡(𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ◡𝑟 ⊆ 𝑟)) |
12 | 6, 11 | bitrid 283 | . 2 ⊢ (𝑟 ∈ Rels → (◡(𝑟 ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ◡𝑟 ⊆ 𝑟)) |
13 | 1, 2, 12 | abeqinbi 38209 | 1 ⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 ⊆ 𝑟} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 class class class wbr 5166 × cxp 5698 ◡ccnv 5699 dom cdm 5700 ran crn 5701 Rels crels 38137 S cssr 38138 Syms csyms 38145 SymRels csymrels 38146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-rels 38441 df-ssr 38454 df-syms 38498 df-symrels 38499 |
This theorem is referenced by: dfsymrels3 38502 dfsymrels4 38503 elsymrels2 38509 refsymrels2 38521 refrelsredund4 38588 |
Copyright terms: Public domain | W3C validator |