| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfsymrels2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the class of symmetric relations. Cf. the comment of dfrefrels2 38489. (Contributed by Peter Mazsa, 20-Jul-2019.) |
| Ref | Expression |
|---|---|
| dfsymrels2 | ⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 ⊆ 𝑟} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-symrels 38519 | . 2 ⊢ SymRels = ( Syms ∩ Rels ) | |
| 2 | df-syms 38518 | . 2 ⊢ Syms = {𝑟 ∣ ◡(𝑟 ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟))} | |
| 3 | inex1g 5299 | . . . . 5 ⊢ (𝑟 ∈ V → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V) | |
| 4 | 3 | elv 3468 | . . . 4 ⊢ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V |
| 5 | brssr 38477 | . . . 4 ⊢ ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V → (◡(𝑟 ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ◡(𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)))) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ (◡(𝑟 ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ◡(𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) |
| 7 | elrels6 38466 | . . . . . . 7 ⊢ (𝑟 ∈ V → (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)) | |
| 8 | 7 | elv 3468 | . . . . . 6 ⊢ (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟) |
| 9 | 8 | biimpi 216 | . . . . 5 ⊢ (𝑟 ∈ Rels → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟) |
| 10 | 9 | cnveqd 5866 | . . . 4 ⊢ (𝑟 ∈ Rels → ◡(𝑟 ∩ (dom 𝑟 × ran 𝑟)) = ◡𝑟) |
| 11 | 10, 9 | sseq12d 3997 | . . 3 ⊢ (𝑟 ∈ Rels → (◡(𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ◡𝑟 ⊆ 𝑟)) |
| 12 | 6, 11 | bitrid 283 | . 2 ⊢ (𝑟 ∈ Rels → (◡(𝑟 ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ◡𝑟 ⊆ 𝑟)) |
| 13 | 1, 2, 12 | abeqinbi 38229 | 1 ⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 ⊆ 𝑟} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 ∈ wcel 2107 {crab 3419 Vcvv 3463 ∩ cin 3930 ⊆ wss 3931 class class class wbr 5123 × cxp 5663 ◡ccnv 5664 dom cdm 5665 ran crn 5666 Rels crels 38159 S cssr 38160 Syms csyms 38167 SymRels csymrels 38168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-xp 5671 df-rel 5672 df-cnv 5673 df-dm 5675 df-rn 5676 df-res 5677 df-rels 38461 df-ssr 38474 df-syms 38518 df-symrels 38519 |
| This theorem is referenced by: dfsymrels3 38522 dfsymrels4 38523 elsymrels2 38529 refsymrels2 38541 refrelsredund4 38608 |
| Copyright terms: Public domain | W3C validator |