Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfsymrels2 Structured version   Visualization version   GIF version

Theorem dfsymrels2 38501
Description: Alternate definition of the class of symmetric relations. Cf. the comment of dfrefrels2 38469. (Contributed by Peter Mazsa, 20-Jul-2019.)
Assertion
Ref Expression
dfsymrels2 SymRels = {𝑟 ∈ Rels ∣ 𝑟𝑟}

Proof of Theorem dfsymrels2
StepHypRef Expression
1 df-symrels 38499 . 2 SymRels = ( Syms ∩ Rels )
2 df-syms 38498 . 2 Syms = {𝑟(𝑟 ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟))}
3 inex1g 5337 . . . . 5 (𝑟 ∈ V → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V)
43elv 3493 . . . 4 (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V
5 brssr 38457 . . . 4 ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V → ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟))))
64, 5ax-mp 5 . . 3 ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)))
7 elrels6 38446 . . . . . . 7 (𝑟 ∈ V → (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟))
87elv 3493 . . . . . 6 (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)
98biimpi 216 . . . . 5 (𝑟 ∈ Rels → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)
109cnveqd 5900 . . . 4 (𝑟 ∈ Rels → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)
1110, 9sseq12d 4042 . . 3 (𝑟 ∈ Rels → ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ 𝑟𝑟))
126, 11bitrid 283 . 2 (𝑟 ∈ Rels → ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ 𝑟𝑟))
131, 2, 12abeqinbi 38209 1 SymRels = {𝑟 ∈ Rels ∣ 𝑟𝑟}
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  cin 3975  wss 3976   class class class wbr 5166   × cxp 5698  ccnv 5699  dom cdm 5700  ran crn 5701   Rels crels 38137   S cssr 38138   Syms csyms 38145   SymRels csymrels 38146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-rels 38441  df-ssr 38454  df-syms 38498  df-symrels 38499
This theorem is referenced by:  dfsymrels3  38502  dfsymrels4  38503  elsymrels2  38509  refsymrels2  38521  refrelsredund4  38588
  Copyright terms: Public domain W3C validator