![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfsymrels2 | Structured version Visualization version GIF version |
Description: Alternate definition of the class of symmetric relations. Cf. the comment of dfrefrels2 35198. (Contributed by Peter Mazsa, 20-Jul-2019.) |
Ref | Expression |
---|---|
dfsymrels2 | ⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 ⊆ 𝑟} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-symrels 35224 | . 2 ⊢ SymRels = ( Syms ∩ Rels ) | |
2 | df-syms 35223 | . 2 ⊢ Syms = {𝑟 ∣ ◡(𝑟 ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟))} | |
3 | inex1g 5074 | . . . . 5 ⊢ (𝑟 ∈ V → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V) | |
4 | 3 | elv 3414 | . . . 4 ⊢ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V |
5 | brssr 35186 | . . . 4 ⊢ ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V → (◡(𝑟 ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ◡(𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)))) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ (◡(𝑟 ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ◡(𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) |
7 | elrels6 35175 | . . . . . . 7 ⊢ (𝑟 ∈ V → (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)) | |
8 | 7 | elv 3414 | . . . . . 6 ⊢ (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟) |
9 | 8 | biimpi 208 | . . . . 5 ⊢ (𝑟 ∈ Rels → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟) |
10 | 9 | cnveqd 5590 | . . . 4 ⊢ (𝑟 ∈ Rels → ◡(𝑟 ∩ (dom 𝑟 × ran 𝑟)) = ◡𝑟) |
11 | 10, 9 | sseq12d 3884 | . . 3 ⊢ (𝑟 ∈ Rels → (◡(𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ◡𝑟 ⊆ 𝑟)) |
12 | 6, 11 | syl5bb 275 | . 2 ⊢ (𝑟 ∈ Rels → (◡(𝑟 ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ◡𝑟 ⊆ 𝑟)) |
13 | 1, 2, 12 | abeqinbi 34959 | 1 ⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 ⊆ 𝑟} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1507 ∈ wcel 2050 {crab 3086 Vcvv 3409 ∩ cin 3822 ⊆ wss 3823 class class class wbr 4923 × cxp 5399 ◡ccnv 5400 dom cdm 5401 ran crn 5402 Rels crels 34899 S cssr 34900 Syms csyms 34907 SymRels csymrels 34908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5054 ax-nul 5061 ax-pr 5180 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-br 4924 df-opab 4986 df-xp 5407 df-rel 5408 df-cnv 5409 df-dm 5411 df-rn 5412 df-res 5413 df-rels 35170 df-ssr 35183 df-syms 35223 df-symrels 35224 |
This theorem is referenced by: dfsymrels3 35227 dfsymrels4 35228 elsymrels2 35234 refsymrels2 35246 refrelsredund4 35312 |
Copyright terms: Public domain | W3C validator |