| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfsymrels2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the class of symmetric relations. Cf. the comment of dfrefrels2 38556. (Contributed by Peter Mazsa, 20-Jul-2019.) |
| Ref | Expression |
|---|---|
| dfsymrels2 | ⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 ⊆ 𝑟} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-symrels 38586 | . 2 ⊢ SymRels = ( Syms ∩ Rels ) | |
| 2 | df-syms 38585 | . 2 ⊢ Syms = {𝑟 ∣ ◡(𝑟 ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟))} | |
| 3 | inex1g 5257 | . . . . 5 ⊢ (𝑟 ∈ V → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V) | |
| 4 | 3 | elv 3441 | . . . 4 ⊢ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V |
| 5 | brssr 38544 | . . . 4 ⊢ ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V → (◡(𝑟 ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ◡(𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)))) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ (◡(𝑟 ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ◡(𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) |
| 7 | elrels6 38533 | . . . . . . 7 ⊢ (𝑟 ∈ V → (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)) | |
| 8 | 7 | elv 3441 | . . . . . 6 ⊢ (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟) |
| 9 | 8 | biimpi 216 | . . . . 5 ⊢ (𝑟 ∈ Rels → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟) |
| 10 | 9 | cnveqd 5815 | . . . 4 ⊢ (𝑟 ∈ Rels → ◡(𝑟 ∩ (dom 𝑟 × ran 𝑟)) = ◡𝑟) |
| 11 | 10, 9 | sseq12d 3968 | . . 3 ⊢ (𝑟 ∈ Rels → (◡(𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ◡𝑟 ⊆ 𝑟)) |
| 12 | 6, 11 | bitrid 283 | . 2 ⊢ (𝑟 ∈ Rels → (◡(𝑟 ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ◡𝑟 ⊆ 𝑟)) |
| 13 | 1, 2, 12 | abeqinbi 38294 | 1 ⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 ⊆ 𝑟} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ∩ cin 3901 ⊆ wss 3902 class class class wbr 5091 × cxp 5614 ◡ccnv 5615 dom cdm 5616 ran crn 5617 Rels crels 38223 S cssr 38224 Syms csyms 38231 SymRels csymrels 38232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-rels 38528 df-ssr 38541 df-syms 38585 df-symrels 38586 |
| This theorem is referenced by: dfsymrels3 38589 dfsymrels4 38590 elsymrels2 38596 refsymrels2 38608 refrelsredund4 38675 |
| Copyright terms: Public domain | W3C validator |