Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfsymrel3 Structured version   Visualization version   GIF version

Theorem dfsymrel3 38541
Description: Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 21-Apr-2019.) (Revised by Peter Mazsa, 17-Aug-2021.)
Assertion
Ref Expression
dfsymrel3 ( SymRel 𝑅 ↔ (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ Rel 𝑅))
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem dfsymrel3
StepHypRef Expression
1 dfsymrel2 38540 . 2 ( SymRel 𝑅 ↔ (𝑅𝑅 ∧ Rel 𝑅))
2 cnvsym 6085 . . 3 (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
32anbi1i 624 . 2 ((𝑅𝑅 ∧ Rel 𝑅) ↔ (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ Rel 𝑅))
41, 3bitri 275 1 ( SymRel 𝑅 ↔ (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wss 3914   class class class wbr 5107  ccnv 5637  Rel wrel 5643   SymRel wsymrel 38181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-symrel 38535
This theorem is referenced by:  refsymrel3  38559
  Copyright terms: Public domain W3C validator