Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfsymrel3 | Structured version Visualization version GIF version |
Description: Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 21-Apr-2019.) (Revised by Peter Mazsa, 17-Aug-2021.) |
Ref | Expression |
---|---|
dfsymrel3 | ⊢ ( SymRel 𝑅 ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ Rel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsymrel2 36286 | . 2 ⊢ ( SymRel 𝑅 ↔ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅)) | |
2 | cnvsym 5948 | . . 3 ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) | |
3 | 2 | anbi1i 627 | . 2 ⊢ ((◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅) ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ Rel 𝑅)) |
4 | 1, 3 | bitri 278 | 1 ⊢ ( SymRel 𝑅 ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ Rel 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∀wal 1540 ⊆ wss 3843 class class class wbr 5030 ◡ccnv 5524 Rel wrel 5530 SymRel wsymrel 35968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-br 5031 df-opab 5093 df-xp 5531 df-rel 5532 df-cnv 5533 df-dm 5535 df-rn 5536 df-res 5537 df-symrel 36281 |
This theorem is referenced by: refsymrel3 36305 |
Copyright terms: Public domain | W3C validator |