| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfsymrel2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 19-Apr-2019.) (Revised by Peter Mazsa, 17-Aug-2021.) |
| Ref | Expression |
|---|---|
| dfsymrel2 | ⊢ ( SymRel 𝑅 ↔ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-symrel 38535 | . 2 ⊢ ( SymRel 𝑅 ↔ (◡(𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) | |
| 2 | dfrel6 38329 | . . . . . 6 ⊢ (Rel 𝑅 ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅) | |
| 3 | 2 | biimpi 216 | . . . . 5 ⊢ (Rel 𝑅 → (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅) |
| 4 | 3 | cnveqd 5839 | . . . 4 ⊢ (Rel 𝑅 → ◡(𝑅 ∩ (dom 𝑅 × ran 𝑅)) = ◡𝑅) |
| 5 | 4, 3 | sseq12d 3980 | . . 3 ⊢ (Rel 𝑅 → (◡(𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ↔ ◡𝑅 ⊆ 𝑅)) |
| 6 | 5 | pm5.32ri 575 | . 2 ⊢ ((◡(𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅) ↔ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅)) |
| 7 | 1, 6 | bitri 275 | 1 ⊢ ( SymRel 𝑅 ↔ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∩ cin 3913 ⊆ wss 3914 × cxp 5636 ◡ccnv 5637 dom cdm 5638 ran crn 5639 Rel wrel 5643 SymRel wsymrel 38181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-symrel 38535 |
| This theorem is referenced by: dfsymrel3 38541 dfsymrel4 38542 dfsymrel5 38543 elsymrelsrel 38548 symreleq 38549 symrelcoss 38551 refsymrel2 38558 eqvrelsym 38596 refrelredund4 38626 |
| Copyright terms: Public domain | W3C validator |