![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfsymrel2 | Structured version Visualization version GIF version |
Description: Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 19-Apr-2019.) (Revised by Peter Mazsa, 17-Aug-2021.) |
Ref | Expression |
---|---|
dfsymrel2 | ⊢ ( SymRel 𝑅 ↔ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-symrel 37052 | . 2 ⊢ ( SymRel 𝑅 ↔ (◡(𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) | |
2 | dfrel6 36854 | . . . . . 6 ⊢ (Rel 𝑅 ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅) | |
3 | 2 | biimpi 215 | . . . . 5 ⊢ (Rel 𝑅 → (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅) |
4 | 3 | cnveqd 5832 | . . . 4 ⊢ (Rel 𝑅 → ◡(𝑅 ∩ (dom 𝑅 × ran 𝑅)) = ◡𝑅) |
5 | 4, 3 | sseq12d 3978 | . . 3 ⊢ (Rel 𝑅 → (◡(𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ↔ ◡𝑅 ⊆ 𝑅)) |
6 | 5 | pm5.32ri 577 | . 2 ⊢ ((◡(𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅) ↔ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅)) |
7 | 1, 6 | bitri 275 | 1 ⊢ ( SymRel 𝑅 ↔ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∩ cin 3910 ⊆ wss 3911 × cxp 5632 ◡ccnv 5633 dom cdm 5634 ran crn 5635 Rel wrel 5639 SymRel wsymrel 36692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-xp 5640 df-rel 5641 df-cnv 5642 df-dm 5644 df-rn 5645 df-res 5646 df-symrel 37052 |
This theorem is referenced by: dfsymrel3 37058 dfsymrel4 37059 dfsymrel5 37060 elsymrelsrel 37065 symreleq 37066 symrelcoss 37068 refsymrel2 37075 eqvrelsym 37113 refrelredund4 37143 |
Copyright terms: Public domain | W3C validator |