Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfsymrel2 Structured version   Visualization version   GIF version

Theorem dfsymrel2 38668
Description: Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 19-Apr-2019.) (Revised by Peter Mazsa, 17-Aug-2021.)
Assertion
Ref Expression
dfsymrel2 ( SymRel 𝑅 ↔ (𝑅𝑅 ∧ Rel 𝑅))

Proof of Theorem dfsymrel2
StepHypRef Expression
1 df-symrel 38659 . 2 ( SymRel 𝑅 ↔ ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅))
2 dfrel6 38402 . . . . . 6 (Rel 𝑅 ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅)
32biimpi 216 . . . . 5 (Rel 𝑅 → (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅)
43cnveqd 5821 . . . 4 (Rel 𝑅(𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅)
54, 3sseq12d 3964 . . 3 (Rel 𝑅 → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ↔ 𝑅𝑅))
65pm5.32ri 575 . 2 (((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅) ↔ (𝑅𝑅 ∧ Rel 𝑅))
71, 6bitri 275 1 ( SymRel 𝑅 ↔ (𝑅𝑅 ∧ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  cin 3897  wss 3898   × cxp 5619  ccnv 5620  dom cdm 5621  ran crn 5622  Rel wrel 5626   SymRel wsymrel 38257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-rel 5628  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-symrel 38659
This theorem is referenced by:  dfsymrel3  38669  dfsymrel4  38670  dfsymrel5  38671  elsymrelsrel  38676  symreleq  38677  symrelcoss  38679  refsymrel2  38686  eqvrelsym  38724  refrelredund4  38754
  Copyright terms: Public domain W3C validator