Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfsymrel2 Structured version   Visualization version   GIF version

Theorem dfsymrel2 36663
Description: Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 19-Apr-2019.) (Revised by Peter Mazsa, 17-Aug-2021.)
Assertion
Ref Expression
dfsymrel2 ( SymRel 𝑅 ↔ (𝑅𝑅 ∧ Rel 𝑅))

Proof of Theorem dfsymrel2
StepHypRef Expression
1 df-symrel 36658 . 2 ( SymRel 𝑅 ↔ ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅))
2 dfrel6 36482 . . . . . 6 (Rel 𝑅 ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅)
32biimpi 215 . . . . 5 (Rel 𝑅 → (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅)
43cnveqd 5784 . . . 4 (Rel 𝑅(𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅)
54, 3sseq12d 3954 . . 3 (Rel 𝑅 → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ↔ 𝑅𝑅))
65pm5.32ri 576 . 2 (((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅) ↔ (𝑅𝑅 ∧ Rel 𝑅))
71, 6bitri 274 1 ( SymRel 𝑅 ↔ (𝑅𝑅 ∧ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  cin 3886  wss 3887   × cxp 5587  ccnv 5588  dom cdm 5589  ran crn 5590  Rel wrel 5594   SymRel wsymrel 36345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-symrel 36658
This theorem is referenced by:  dfsymrel3  36664  dfsymrel4  36665  dfsymrel5  36666  elsymrelsrel  36671  symreleq  36672  symrelcoss  36674  refsymrel2  36681  eqvrelsym  36718  refrelredund4  36748
  Copyright terms: Public domain W3C validator