Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfsymrel2 | Structured version Visualization version GIF version |
Description: Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 19-Apr-2019.) (Revised by Peter Mazsa, 17-Aug-2021.) |
Ref | Expression |
---|---|
dfsymrel2 | ⊢ ( SymRel 𝑅 ↔ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-symrel 36658 | . 2 ⊢ ( SymRel 𝑅 ↔ (◡(𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) | |
2 | dfrel6 36482 | . . . . . 6 ⊢ (Rel 𝑅 ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅) | |
3 | 2 | biimpi 215 | . . . . 5 ⊢ (Rel 𝑅 → (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅) |
4 | 3 | cnveqd 5784 | . . . 4 ⊢ (Rel 𝑅 → ◡(𝑅 ∩ (dom 𝑅 × ran 𝑅)) = ◡𝑅) |
5 | 4, 3 | sseq12d 3954 | . . 3 ⊢ (Rel 𝑅 → (◡(𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ↔ ◡𝑅 ⊆ 𝑅)) |
6 | 5 | pm5.32ri 576 | . 2 ⊢ ((◡(𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅) ↔ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅)) |
7 | 1, 6 | bitri 274 | 1 ⊢ ( SymRel 𝑅 ↔ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∩ cin 3886 ⊆ wss 3887 × cxp 5587 ◡ccnv 5588 dom cdm 5589 ran crn 5590 Rel wrel 5594 SymRel wsymrel 36345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-symrel 36658 |
This theorem is referenced by: dfsymrel3 36664 dfsymrel4 36665 dfsymrel5 36666 elsymrelsrel 36671 symreleq 36672 symrelcoss 36674 refsymrel2 36681 eqvrelsym 36718 refrelredund4 36748 |
Copyright terms: Public domain | W3C validator |