![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > istdrg | Structured version Visualization version GIF version |
Description: Express the predicate "π is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
istrg.1 | β’ π = (mulGrpβπ ) |
istdrg.1 | β’ π = (Unitβπ ) |
Ref | Expression |
---|---|
istdrg | β’ (π β TopDRing β (π β TopRing β§ π β DivRing β§ (π βΎs π) β TopGrp)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3963 | . . 3 β’ (π β (TopRing β© DivRing) β (π β TopRing β§ π β DivRing)) | |
2 | 1 | anbi1i 623 | . 2 β’ ((π β (TopRing β© DivRing) β§ (π βΎs π) β TopGrp) β ((π β TopRing β§ π β DivRing) β§ (π βΎs π) β TopGrp)) |
3 | fveq2 6897 | . . . . . 6 β’ (π = π β (mulGrpβπ) = (mulGrpβπ )) | |
4 | istrg.1 | . . . . . 6 β’ π = (mulGrpβπ ) | |
5 | 3, 4 | eqtr4di 2786 | . . . . 5 β’ (π = π β (mulGrpβπ) = π) |
6 | fveq2 6897 | . . . . . 6 β’ (π = π β (Unitβπ) = (Unitβπ )) | |
7 | istdrg.1 | . . . . . 6 β’ π = (Unitβπ ) | |
8 | 6, 7 | eqtr4di 2786 | . . . . 5 β’ (π = π β (Unitβπ) = π) |
9 | 5, 8 | oveq12d 7438 | . . . 4 β’ (π = π β ((mulGrpβπ) βΎs (Unitβπ)) = (π βΎs π)) |
10 | 9 | eleq1d 2814 | . . 3 β’ (π = π β (((mulGrpβπ) βΎs (Unitβπ)) β TopGrp β (π βΎs π) β TopGrp)) |
11 | df-tdrg 24078 | . . 3 β’ TopDRing = {π β (TopRing β© DivRing) β£ ((mulGrpβπ) βΎs (Unitβπ)) β TopGrp} | |
12 | 10, 11 | elrab2 3685 | . 2 β’ (π β TopDRing β (π β (TopRing β© DivRing) β§ (π βΎs π) β TopGrp)) |
13 | df-3an 1087 | . 2 β’ ((π β TopRing β§ π β DivRing β§ (π βΎs π) β TopGrp) β ((π β TopRing β§ π β DivRing) β§ (π βΎs π) β TopGrp)) | |
14 | 2, 12, 13 | 3bitr4i 303 | 1 β’ (π β TopDRing β (π β TopRing β§ π β DivRing β§ (π βΎs π) β TopGrp)) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 395 β§ w3a 1085 = wceq 1534 β wcel 2099 β© cin 3946 βcfv 6548 (class class class)co 7420 βΎs cress 17209 mulGrpcmgp 20074 Unitcui 20294 DivRingcdr 20624 TopGrpctgp 23988 TopRingctrg 24073 TopDRingctdrg 24074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-iota 6500 df-fv 6556 df-ov 7423 df-tdrg 24078 |
This theorem is referenced by: tdrgunit 24084 tdrgtrg 24090 tdrgdrng 24091 istdrg2 24095 nrgtdrg 24623 |
Copyright terms: Public domain | W3C validator |