| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > istdrg | Structured version Visualization version GIF version | ||
| Description: Express the predicate "𝑅 is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| istrg.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
| istdrg.1 | ⊢ 𝑈 = (Unit‘𝑅) |
| Ref | Expression |
|---|---|
| istdrg | ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3947 | . . 3 ⊢ (𝑅 ∈ (TopRing ∩ DivRing) ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing)) | |
| 2 | 1 | anbi1i 624 | . 2 ⊢ ((𝑅 ∈ (TopRing ∩ DivRing) ∧ (𝑀 ↾s 𝑈) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) |
| 3 | fveq2 6886 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅)) | |
| 4 | istrg.1 | . . . . . 6 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 5 | 3, 4 | eqtr4di 2787 | . . . . 5 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = 𝑀) |
| 6 | fveq2 6886 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) | |
| 7 | istdrg.1 | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
| 8 | 6, 7 | eqtr4di 2787 | . . . . 5 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈) |
| 9 | 5, 8 | oveq12d 7431 | . . . 4 ⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) = (𝑀 ↾s 𝑈)) |
| 10 | 9 | eleq1d 2818 | . . 3 ⊢ (𝑟 = 𝑅 → (((mulGrp‘𝑟) ↾s (Unit‘𝑟)) ∈ TopGrp ↔ (𝑀 ↾s 𝑈) ∈ TopGrp)) |
| 11 | df-tdrg 24116 | . . 3 ⊢ TopDRing = {𝑟 ∈ (TopRing ∩ DivRing) ∣ ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) ∈ TopGrp} | |
| 12 | 10, 11 | elrab2 3678 | . 2 ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ (TopRing ∩ DivRing) ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) |
| 13 | df-3an 1088 | . 2 ⊢ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s 𝑈) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) | |
| 14 | 2, 12, 13 | 3bitr4i 303 | 1 ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∩ cin 3930 ‘cfv 6541 (class class class)co 7413 ↾s cress 17253 mulGrpcmgp 20106 Unitcui 20324 DivRingcdr 20698 TopGrpctgp 24026 TopRingctrg 24111 TopDRingctdrg 24112 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 df-ov 7416 df-tdrg 24116 |
| This theorem is referenced by: tdrgunit 24122 tdrgtrg 24128 tdrgdrng 24129 istdrg2 24133 nrgtdrg 24651 |
| Copyright terms: Public domain | W3C validator |