![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > istdrg | Structured version Visualization version GIF version |
Description: Express the predicate "π is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
istrg.1 | β’ π = (mulGrpβπ ) |
istdrg.1 | β’ π = (Unitβπ ) |
Ref | Expression |
---|---|
istdrg | β’ (π β TopDRing β (π β TopRing β§ π β DivRing β§ (π βΎs π) β TopGrp)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3957 | . . 3 β’ (π β (TopRing β© DivRing) β (π β TopRing β§ π β DivRing)) | |
2 | 1 | anbi1i 623 | . 2 β’ ((π β (TopRing β© DivRing) β§ (π βΎs π) β TopGrp) β ((π β TopRing β§ π β DivRing) β§ (π βΎs π) β TopGrp)) |
3 | fveq2 6882 | . . . . . 6 β’ (π = π β (mulGrpβπ) = (mulGrpβπ )) | |
4 | istrg.1 | . . . . . 6 β’ π = (mulGrpβπ ) | |
5 | 3, 4 | eqtr4di 2782 | . . . . 5 β’ (π = π β (mulGrpβπ) = π) |
6 | fveq2 6882 | . . . . . 6 β’ (π = π β (Unitβπ) = (Unitβπ )) | |
7 | istdrg.1 | . . . . . 6 β’ π = (Unitβπ ) | |
8 | 6, 7 | eqtr4di 2782 | . . . . 5 β’ (π = π β (Unitβπ) = π) |
9 | 5, 8 | oveq12d 7420 | . . . 4 β’ (π = π β ((mulGrpβπ) βΎs (Unitβπ)) = (π βΎs π)) |
10 | 9 | eleq1d 2810 | . . 3 β’ (π = π β (((mulGrpβπ) βΎs (Unitβπ)) β TopGrp β (π βΎs π) β TopGrp)) |
11 | df-tdrg 24009 | . . 3 β’ TopDRing = {π β (TopRing β© DivRing) β£ ((mulGrpβπ) βΎs (Unitβπ)) β TopGrp} | |
12 | 10, 11 | elrab2 3679 | . 2 β’ (π β TopDRing β (π β (TopRing β© DivRing) β§ (π βΎs π) β TopGrp)) |
13 | df-3an 1086 | . 2 β’ ((π β TopRing β§ π β DivRing β§ (π βΎs π) β TopGrp) β ((π β TopRing β§ π β DivRing) β§ (π βΎs π) β TopGrp)) | |
14 | 2, 12, 13 | 3bitr4i 303 | 1 β’ (π β TopDRing β (π β TopRing β§ π β DivRing β§ (π βΎs π) β TopGrp)) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 β© cin 3940 βcfv 6534 (class class class)co 7402 βΎs cress 17178 mulGrpcmgp 20035 Unitcui 20253 DivRingcdr 20583 TopGrpctgp 23919 TopRingctrg 24004 TopDRingctdrg 24005 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-iota 6486 df-fv 6542 df-ov 7405 df-tdrg 24009 |
This theorem is referenced by: tdrgunit 24015 tdrgtrg 24021 tdrgdrng 24022 istdrg2 24026 nrgtdrg 24554 |
Copyright terms: Public domain | W3C validator |