MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istdrg Structured version   Visualization version   GIF version

Theorem istdrg 24014
Description: Express the predicate "𝑅 is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
istrg.1 𝑀 = (mulGrpβ€˜π‘…)
istdrg.1 π‘ˆ = (Unitβ€˜π‘…)
Assertion
Ref Expression
istdrg (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 β†Ύs π‘ˆ) ∈ TopGrp))

Proof of Theorem istdrg
Dummy variable π‘Ÿ is distinct from all other variables.
StepHypRef Expression
1 elin 3957 . . 3 (𝑅 ∈ (TopRing ∩ DivRing) ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing))
21anbi1i 623 . 2 ((𝑅 ∈ (TopRing ∩ DivRing) ∧ (𝑀 β†Ύs π‘ˆ) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀 β†Ύs π‘ˆ) ∈ TopGrp))
3 fveq2 6882 . . . . . 6 (π‘Ÿ = 𝑅 β†’ (mulGrpβ€˜π‘Ÿ) = (mulGrpβ€˜π‘…))
4 istrg.1 . . . . . 6 𝑀 = (mulGrpβ€˜π‘…)
53, 4eqtr4di 2782 . . . . 5 (π‘Ÿ = 𝑅 β†’ (mulGrpβ€˜π‘Ÿ) = 𝑀)
6 fveq2 6882 . . . . . 6 (π‘Ÿ = 𝑅 β†’ (Unitβ€˜π‘Ÿ) = (Unitβ€˜π‘…))
7 istdrg.1 . . . . . 6 π‘ˆ = (Unitβ€˜π‘…)
86, 7eqtr4di 2782 . . . . 5 (π‘Ÿ = 𝑅 β†’ (Unitβ€˜π‘Ÿ) = π‘ˆ)
95, 8oveq12d 7420 . . . 4 (π‘Ÿ = 𝑅 β†’ ((mulGrpβ€˜π‘Ÿ) β†Ύs (Unitβ€˜π‘Ÿ)) = (𝑀 β†Ύs π‘ˆ))
109eleq1d 2810 . . 3 (π‘Ÿ = 𝑅 β†’ (((mulGrpβ€˜π‘Ÿ) β†Ύs (Unitβ€˜π‘Ÿ)) ∈ TopGrp ↔ (𝑀 β†Ύs π‘ˆ) ∈ TopGrp))
11 df-tdrg 24009 . . 3 TopDRing = {π‘Ÿ ∈ (TopRing ∩ DivRing) ∣ ((mulGrpβ€˜π‘Ÿ) β†Ύs (Unitβ€˜π‘Ÿ)) ∈ TopGrp}
1210, 11elrab2 3679 . 2 (𝑅 ∈ TopDRing ↔ (𝑅 ∈ (TopRing ∩ DivRing) ∧ (𝑀 β†Ύs π‘ˆ) ∈ TopGrp))
13 df-3an 1086 . 2 ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 β†Ύs π‘ˆ) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀 β†Ύs π‘ˆ) ∈ TopGrp))
142, 12, 133bitr4i 303 1 (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 β†Ύs π‘ˆ) ∈ TopGrp))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   ∩ cin 3940  β€˜cfv 6534  (class class class)co 7402   β†Ύs cress 17178  mulGrpcmgp 20035  Unitcui 20253  DivRingcdr 20583  TopGrpctgp 23919  TopRingctrg 24004  TopDRingctdrg 24005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-iota 6486  df-fv 6542  df-ov 7405  df-tdrg 24009
This theorem is referenced by:  tdrgunit  24015  tdrgtrg  24021  tdrgdrng  24022  istdrg2  24026  nrgtdrg  24554
  Copyright terms: Public domain W3C validator