MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istdrg Structured version   Visualization version   GIF version

Theorem istdrg 24060
Description: Express the predicate "𝑅 is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
istrg.1 𝑀 = (mulGrp‘𝑅)
istdrg.1 𝑈 = (Unit‘𝑅)
Assertion
Ref Expression
istdrg (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s 𝑈) ∈ TopGrp))

Proof of Theorem istdrg
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 elin 3933 . . 3 (𝑅 ∈ (TopRing ∩ DivRing) ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing))
21anbi1i 624 . 2 ((𝑅 ∈ (TopRing ∩ DivRing) ∧ (𝑀s 𝑈) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀s 𝑈) ∈ TopGrp))
3 fveq2 6861 . . . . . 6 (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅))
4 istrg.1 . . . . . 6 𝑀 = (mulGrp‘𝑅)
53, 4eqtr4di 2783 . . . . 5 (𝑟 = 𝑅 → (mulGrp‘𝑟) = 𝑀)
6 fveq2 6861 . . . . . 6 (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅))
7 istdrg.1 . . . . . 6 𝑈 = (Unit‘𝑅)
86, 7eqtr4di 2783 . . . . 5 (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈)
95, 8oveq12d 7408 . . . 4 (𝑟 = 𝑅 → ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) = (𝑀s 𝑈))
109eleq1d 2814 . . 3 (𝑟 = 𝑅 → (((mulGrp‘𝑟) ↾s (Unit‘𝑟)) ∈ TopGrp ↔ (𝑀s 𝑈) ∈ TopGrp))
11 df-tdrg 24055 . . 3 TopDRing = {𝑟 ∈ (TopRing ∩ DivRing) ∣ ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) ∈ TopGrp}
1210, 11elrab2 3665 . 2 (𝑅 ∈ TopDRing ↔ (𝑅 ∈ (TopRing ∩ DivRing) ∧ (𝑀s 𝑈) ∈ TopGrp))
13 df-3an 1088 . 2 ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s 𝑈) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀s 𝑈) ∈ TopGrp))
142, 12, 133bitr4i 303 1 (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s 𝑈) ∈ TopGrp))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3916  cfv 6514  (class class class)co 7390  s cress 17207  mulGrpcmgp 20056  Unitcui 20271  DivRingcdr 20645  TopGrpctgp 23965  TopRingctrg 24050  TopDRingctdrg 24051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-tdrg 24055
This theorem is referenced by:  tdrgunit  24061  tdrgtrg  24067  tdrgdrng  24068  istdrg2  24072  nrgtdrg  24588
  Copyright terms: Public domain W3C validator