![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > istdrg | Structured version Visualization version GIF version |
Description: Express the predicate "𝑅 is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
istrg.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
istdrg.1 | ⊢ 𝑈 = (Unit‘𝑅) |
Ref | Expression |
---|---|
istdrg | ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3992 | . . 3 ⊢ (𝑅 ∈ (TopRing ∩ DivRing) ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing)) | |
2 | 1 | anbi1i 623 | . 2 ⊢ ((𝑅 ∈ (TopRing ∩ DivRing) ∧ (𝑀 ↾s 𝑈) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) |
3 | fveq2 6920 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅)) | |
4 | istrg.1 | . . . . . 6 ⊢ 𝑀 = (mulGrp‘𝑅) | |
5 | 3, 4 | eqtr4di 2798 | . . . . 5 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = 𝑀) |
6 | fveq2 6920 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) | |
7 | istdrg.1 | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
8 | 6, 7 | eqtr4di 2798 | . . . . 5 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈) |
9 | 5, 8 | oveq12d 7466 | . . . 4 ⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) = (𝑀 ↾s 𝑈)) |
10 | 9 | eleq1d 2829 | . . 3 ⊢ (𝑟 = 𝑅 → (((mulGrp‘𝑟) ↾s (Unit‘𝑟)) ∈ TopGrp ↔ (𝑀 ↾s 𝑈) ∈ TopGrp)) |
11 | df-tdrg 24190 | . . 3 ⊢ TopDRing = {𝑟 ∈ (TopRing ∩ DivRing) ∣ ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) ∈ TopGrp} | |
12 | 10, 11 | elrab2 3711 | . 2 ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ (TopRing ∩ DivRing) ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) |
13 | df-3an 1089 | . 2 ⊢ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s 𝑈) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) | |
14 | 2, 12, 13 | 3bitr4i 303 | 1 ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ‘cfv 6573 (class class class)co 7448 ↾s cress 17287 mulGrpcmgp 20161 Unitcui 20381 DivRingcdr 20751 TopGrpctgp 24100 TopRingctrg 24185 TopDRingctdrg 24186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-tdrg 24190 |
This theorem is referenced by: tdrgunit 24196 tdrgtrg 24202 tdrgdrng 24203 istdrg2 24207 nrgtdrg 24735 |
Copyright terms: Public domain | W3C validator |