| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > istdrg | Structured version Visualization version GIF version | ||
| Description: Express the predicate "𝑅 is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| istrg.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
| istdrg.1 | ⊢ 𝑈 = (Unit‘𝑅) |
| Ref | Expression |
|---|---|
| istdrg | ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3914 | . . 3 ⊢ (𝑅 ∈ (TopRing ∩ DivRing) ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing)) | |
| 2 | 1 | anbi1i 624 | . 2 ⊢ ((𝑅 ∈ (TopRing ∩ DivRing) ∧ (𝑀 ↾s 𝑈) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) |
| 3 | fveq2 6830 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅)) | |
| 4 | istrg.1 | . . . . . 6 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 5 | 3, 4 | eqtr4di 2786 | . . . . 5 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = 𝑀) |
| 6 | fveq2 6830 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) | |
| 7 | istdrg.1 | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
| 8 | 6, 7 | eqtr4di 2786 | . . . . 5 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈) |
| 9 | 5, 8 | oveq12d 7372 | . . . 4 ⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) = (𝑀 ↾s 𝑈)) |
| 10 | 9 | eleq1d 2818 | . . 3 ⊢ (𝑟 = 𝑅 → (((mulGrp‘𝑟) ↾s (Unit‘𝑟)) ∈ TopGrp ↔ (𝑀 ↾s 𝑈) ∈ TopGrp)) |
| 11 | df-tdrg 24079 | . . 3 ⊢ TopDRing = {𝑟 ∈ (TopRing ∩ DivRing) ∣ ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) ∈ TopGrp} | |
| 12 | 10, 11 | elrab2 3646 | . 2 ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ (TopRing ∩ DivRing) ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) |
| 13 | df-3an 1088 | . 2 ⊢ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s 𝑈) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) | |
| 14 | 2, 12, 13 | 3bitr4i 303 | 1 ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∩ cin 3897 ‘cfv 6488 (class class class)co 7354 ↾s cress 17145 mulGrpcmgp 20062 Unitcui 20277 DivRingcdr 20648 TopGrpctgp 23989 TopRingctrg 24074 TopDRingctdrg 24075 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6444 df-fv 6496 df-ov 7357 df-tdrg 24079 |
| This theorem is referenced by: tdrgunit 24085 tdrgtrg 24091 tdrgdrng 24092 istdrg2 24096 nrgtdrg 24611 |
| Copyright terms: Public domain | W3C validator |