![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > istdrg | Structured version Visualization version GIF version |
Description: Express the predicate "𝑅 is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
istrg.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
istdrg.1 | ⊢ 𝑈 = (Unit‘𝑅) |
Ref | Expression |
---|---|
istdrg | ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3995 | . . 3 ⊢ (𝑅 ∈ (TopRing ∩ DivRing) ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing)) | |
2 | 1 | anbi1i 618 | . 2 ⊢ ((𝑅 ∈ (TopRing ∩ DivRing) ∧ (𝑀 ↾s 𝑈) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) |
3 | fveq2 6412 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅)) | |
4 | istrg.1 | . . . . . 6 ⊢ 𝑀 = (mulGrp‘𝑅) | |
5 | 3, 4 | syl6eqr 2852 | . . . . 5 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = 𝑀) |
6 | fveq2 6412 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) | |
7 | istdrg.1 | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
8 | 6, 7 | syl6eqr 2852 | . . . . 5 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈) |
9 | 5, 8 | oveq12d 6897 | . . . 4 ⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) = (𝑀 ↾s 𝑈)) |
10 | 9 | eleq1d 2864 | . . 3 ⊢ (𝑟 = 𝑅 → (((mulGrp‘𝑟) ↾s (Unit‘𝑟)) ∈ TopGrp ↔ (𝑀 ↾s 𝑈) ∈ TopGrp)) |
11 | df-tdrg 22291 | . . 3 ⊢ TopDRing = {𝑟 ∈ (TopRing ∩ DivRing) ∣ ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) ∈ TopGrp} | |
12 | 10, 11 | elrab2 3561 | . 2 ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ (TopRing ∩ DivRing) ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) |
13 | df-3an 1110 | . 2 ⊢ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s 𝑈) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) | |
14 | 2, 12, 13 | 3bitr4i 295 | 1 ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ∩ cin 3769 ‘cfv 6102 (class class class)co 6879 ↾s cress 16184 mulGrpcmgp 18804 Unitcui 18954 DivRingcdr 19064 TopGrpctgp 22202 TopRingctrg 22286 TopDRingctdrg 22287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-rex 3096 df-rab 3099 df-v 3388 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-br 4845 df-iota 6065 df-fv 6110 df-ov 6882 df-tdrg 22291 |
This theorem is referenced by: tdrgunit 22297 tdrgtrg 22303 tdrgdrng 22304 istdrg2 22308 nrgtdrg 22824 |
Copyright terms: Public domain | W3C validator |