Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  istgp Structured version   Visualization version   GIF version

Theorem istgp 22792
 Description: The predicate "is a topological group". Definition 1 of [BourbakiTop1] p. III.1. (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
istgp.1 𝐽 = (TopOpen‘𝐺)
istgp.2 𝐼 = (invg𝐺)
Assertion
Ref Expression
istgp (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ (𝐽 Cn 𝐽)))

Proof of Theorem istgp
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3877 . . 3 (𝐺 ∈ (Grp ∩ TopMnd) ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd))
21anbi1i 626 . 2 ((𝐺 ∈ (Grp ∩ TopMnd) ∧ 𝐼 ∈ (𝐽 Cn 𝐽)) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd) ∧ 𝐼 ∈ (𝐽 Cn 𝐽)))
3 fvexd 6679 . . . 4 (𝑓 = 𝐺 → (TopOpen‘𝑓) ∈ V)
4 simpl 486 . . . . . . 7 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → 𝑓 = 𝐺)
54fveq2d 6668 . . . . . 6 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → (invg𝑓) = (invg𝐺))
6 istgp.2 . . . . . 6 𝐼 = (invg𝐺)
75, 6eqtr4di 2812 . . . . 5 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → (invg𝑓) = 𝐼)
8 id 22 . . . . . . 7 (𝑗 = (TopOpen‘𝑓) → 𝑗 = (TopOpen‘𝑓))
9 fveq2 6664 . . . . . . . 8 (𝑓 = 𝐺 → (TopOpen‘𝑓) = (TopOpen‘𝐺))
10 istgp.1 . . . . . . . 8 𝐽 = (TopOpen‘𝐺)
119, 10eqtr4di 2812 . . . . . . 7 (𝑓 = 𝐺 → (TopOpen‘𝑓) = 𝐽)
128, 11sylan9eqr 2816 . . . . . 6 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → 𝑗 = 𝐽)
1312, 12oveq12d 7175 . . . . 5 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → (𝑗 Cn 𝑗) = (𝐽 Cn 𝐽))
147, 13eleq12d 2847 . . . 4 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → ((invg𝑓) ∈ (𝑗 Cn 𝑗) ↔ 𝐼 ∈ (𝐽 Cn 𝐽)))
153, 14sbcied 3742 . . 3 (𝑓 = 𝐺 → ([(TopOpen‘𝑓) / 𝑗](invg𝑓) ∈ (𝑗 Cn 𝑗) ↔ 𝐼 ∈ (𝐽 Cn 𝐽)))
16 df-tgp 22788 . . 3 TopGrp = {𝑓 ∈ (Grp ∩ TopMnd) ∣ [(TopOpen‘𝑓) / 𝑗](invg𝑓) ∈ (𝑗 Cn 𝑗)}
1715, 16elrab2 3608 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ (Grp ∩ TopMnd) ∧ 𝐼 ∈ (𝐽 Cn 𝐽)))
18 df-3an 1087 . 2 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ (𝐽 Cn 𝐽)) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd) ∧ 𝐼 ∈ (𝐽 Cn 𝐽)))
192, 17, 183bitr4i 306 1 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ (𝐽 Cn 𝐽)))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   ∧ w3a 1085   = wceq 1539   ∈ wcel 2112  Vcvv 3410  [wsbc 3699   ∩ cin 3860  ‘cfv 6341  (class class class)co 7157  TopOpenctopn 16768  Grpcgrp 18184  invgcminusg 18185   Cn ccn 21939  TopMndctmd 22785  TopGrpctgp 22786 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-nul 5181 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3700  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-nul 4229  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4803  df-br 5038  df-iota 6300  df-fv 6349  df-ov 7160  df-tgp 22788 This theorem is referenced by:  tgpgrp  22793  tgptmd  22794  tgpinv  22800  istgp2  22806  oppgtgp  22813  subgtgp  22820  symgtgp  22821  prdstgpd  22840  tlmtgp  22911  nrgtdrg  23410
 Copyright terms: Public domain W3C validator