MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istgp Structured version   Visualization version   GIF version

Theorem istgp 23228
Description: The predicate "is a topological group". Definition 1 of [BourbakiTop1] p. III.1. (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
istgp.1 𝐽 = (TopOpen‘𝐺)
istgp.2 𝐼 = (invg𝐺)
Assertion
Ref Expression
istgp (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ (𝐽 Cn 𝐽)))

Proof of Theorem istgp
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3903 . . 3 (𝐺 ∈ (Grp ∩ TopMnd) ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd))
21anbi1i 624 . 2 ((𝐺 ∈ (Grp ∩ TopMnd) ∧ 𝐼 ∈ (𝐽 Cn 𝐽)) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd) ∧ 𝐼 ∈ (𝐽 Cn 𝐽)))
3 fvexd 6789 . . . 4 (𝑓 = 𝐺 → (TopOpen‘𝑓) ∈ V)
4 simpl 483 . . . . . . 7 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → 𝑓 = 𝐺)
54fveq2d 6778 . . . . . 6 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → (invg𝑓) = (invg𝐺))
6 istgp.2 . . . . . 6 𝐼 = (invg𝐺)
75, 6eqtr4di 2796 . . . . 5 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → (invg𝑓) = 𝐼)
8 id 22 . . . . . . 7 (𝑗 = (TopOpen‘𝑓) → 𝑗 = (TopOpen‘𝑓))
9 fveq2 6774 . . . . . . . 8 (𝑓 = 𝐺 → (TopOpen‘𝑓) = (TopOpen‘𝐺))
10 istgp.1 . . . . . . . 8 𝐽 = (TopOpen‘𝐺)
119, 10eqtr4di 2796 . . . . . . 7 (𝑓 = 𝐺 → (TopOpen‘𝑓) = 𝐽)
128, 11sylan9eqr 2800 . . . . . 6 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → 𝑗 = 𝐽)
1312, 12oveq12d 7293 . . . . 5 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → (𝑗 Cn 𝑗) = (𝐽 Cn 𝐽))
147, 13eleq12d 2833 . . . 4 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → ((invg𝑓) ∈ (𝑗 Cn 𝑗) ↔ 𝐼 ∈ (𝐽 Cn 𝐽)))
153, 14sbcied 3761 . . 3 (𝑓 = 𝐺 → ([(TopOpen‘𝑓) / 𝑗](invg𝑓) ∈ (𝑗 Cn 𝑗) ↔ 𝐼 ∈ (𝐽 Cn 𝐽)))
16 df-tgp 23224 . . 3 TopGrp = {𝑓 ∈ (Grp ∩ TopMnd) ∣ [(TopOpen‘𝑓) / 𝑗](invg𝑓) ∈ (𝑗 Cn 𝑗)}
1715, 16elrab2 3627 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ (Grp ∩ TopMnd) ∧ 𝐼 ∈ (𝐽 Cn 𝐽)))
18 df-3an 1088 . 2 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ (𝐽 Cn 𝐽)) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd) ∧ 𝐼 ∈ (𝐽 Cn 𝐽)))
192, 17, 183bitr4i 303 1 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ (𝐽 Cn 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  [wsbc 3716  cin 3886  cfv 6433  (class class class)co 7275  TopOpenctopn 17132  Grpcgrp 18577  invgcminusg 18578   Cn ccn 22375  TopMndctmd 23221  TopGrpctgp 23222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-tgp 23224
This theorem is referenced by:  tgpgrp  23229  tgptmd  23230  tgpinv  23236  istgp2  23242  oppgtgp  23249  subgtgp  23256  symgtgp  23257  prdstgpd  23276  tlmtgp  23347  nrgtdrg  23857
  Copyright terms: Public domain W3C validator