Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > istgp | Structured version Visualization version GIF version |
Description: The predicate "is a topological group". Definition 1 of [BourbakiTop1] p. III.1. (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
istgp.1 | ⊢ 𝐽 = (TopOpen‘𝐺) |
istgp.2 | ⊢ 𝐼 = (invg‘𝐺) |
Ref | Expression |
---|---|
istgp | ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ (𝐽 Cn 𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3899 | . . 3 ⊢ (𝐺 ∈ (Grp ∩ TopMnd) ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd)) | |
2 | 1 | anbi1i 623 | . 2 ⊢ ((𝐺 ∈ (Grp ∩ TopMnd) ∧ 𝐼 ∈ (𝐽 Cn 𝐽)) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd) ∧ 𝐼 ∈ (𝐽 Cn 𝐽))) |
3 | fvexd 6771 | . . . 4 ⊢ (𝑓 = 𝐺 → (TopOpen‘𝑓) ∈ V) | |
4 | simpl 482 | . . . . . . 7 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → 𝑓 = 𝐺) | |
5 | 4 | fveq2d 6760 | . . . . . 6 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → (invg‘𝑓) = (invg‘𝐺)) |
6 | istgp.2 | . . . . . 6 ⊢ 𝐼 = (invg‘𝐺) | |
7 | 5, 6 | eqtr4di 2797 | . . . . 5 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → (invg‘𝑓) = 𝐼) |
8 | id 22 | . . . . . . 7 ⊢ (𝑗 = (TopOpen‘𝑓) → 𝑗 = (TopOpen‘𝑓)) | |
9 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑓 = 𝐺 → (TopOpen‘𝑓) = (TopOpen‘𝐺)) | |
10 | istgp.1 | . . . . . . . 8 ⊢ 𝐽 = (TopOpen‘𝐺) | |
11 | 9, 10 | eqtr4di 2797 | . . . . . . 7 ⊢ (𝑓 = 𝐺 → (TopOpen‘𝑓) = 𝐽) |
12 | 8, 11 | sylan9eqr 2801 | . . . . . 6 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → 𝑗 = 𝐽) |
13 | 12, 12 | oveq12d 7273 | . . . . 5 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → (𝑗 Cn 𝑗) = (𝐽 Cn 𝐽)) |
14 | 7, 13 | eleq12d 2833 | . . . 4 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → ((invg‘𝑓) ∈ (𝑗 Cn 𝑗) ↔ 𝐼 ∈ (𝐽 Cn 𝐽))) |
15 | 3, 14 | sbcied 3756 | . . 3 ⊢ (𝑓 = 𝐺 → ([(TopOpen‘𝑓) / 𝑗](invg‘𝑓) ∈ (𝑗 Cn 𝑗) ↔ 𝐼 ∈ (𝐽 Cn 𝐽))) |
16 | df-tgp 23132 | . . 3 ⊢ TopGrp = {𝑓 ∈ (Grp ∩ TopMnd) ∣ [(TopOpen‘𝑓) / 𝑗](invg‘𝑓) ∈ (𝑗 Cn 𝑗)} | |
17 | 15, 16 | elrab2 3620 | . 2 ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ (Grp ∩ TopMnd) ∧ 𝐼 ∈ (𝐽 Cn 𝐽))) |
18 | df-3an 1087 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ (𝐽 Cn 𝐽)) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd) ∧ 𝐼 ∈ (𝐽 Cn 𝐽))) | |
19 | 2, 17, 18 | 3bitr4i 302 | 1 ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ (𝐽 Cn 𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 Vcvv 3422 [wsbc 3711 ∩ cin 3882 ‘cfv 6418 (class class class)co 7255 TopOpenctopn 17049 Grpcgrp 18492 invgcminusg 18493 Cn ccn 22283 TopMndctmd 23129 TopGrpctgp 23130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-tgp 23132 |
This theorem is referenced by: tgpgrp 23137 tgptmd 23138 tgpinv 23144 istgp2 23150 oppgtgp 23157 subgtgp 23164 symgtgp 23165 prdstgpd 23184 tlmtgp 23255 nrgtdrg 23763 |
Copyright terms: Public domain | W3C validator |