MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istgp Structured version   Visualization version   GIF version

Theorem istgp 23136
Description: The predicate "is a topological group". Definition 1 of [BourbakiTop1] p. III.1. (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
istgp.1 𝐽 = (TopOpen‘𝐺)
istgp.2 𝐼 = (invg𝐺)
Assertion
Ref Expression
istgp (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ (𝐽 Cn 𝐽)))

Proof of Theorem istgp
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3899 . . 3 (𝐺 ∈ (Grp ∩ TopMnd) ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd))
21anbi1i 623 . 2 ((𝐺 ∈ (Grp ∩ TopMnd) ∧ 𝐼 ∈ (𝐽 Cn 𝐽)) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd) ∧ 𝐼 ∈ (𝐽 Cn 𝐽)))
3 fvexd 6771 . . . 4 (𝑓 = 𝐺 → (TopOpen‘𝑓) ∈ V)
4 simpl 482 . . . . . . 7 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → 𝑓 = 𝐺)
54fveq2d 6760 . . . . . 6 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → (invg𝑓) = (invg𝐺))
6 istgp.2 . . . . . 6 𝐼 = (invg𝐺)
75, 6eqtr4di 2797 . . . . 5 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → (invg𝑓) = 𝐼)
8 id 22 . . . . . . 7 (𝑗 = (TopOpen‘𝑓) → 𝑗 = (TopOpen‘𝑓))
9 fveq2 6756 . . . . . . . 8 (𝑓 = 𝐺 → (TopOpen‘𝑓) = (TopOpen‘𝐺))
10 istgp.1 . . . . . . . 8 𝐽 = (TopOpen‘𝐺)
119, 10eqtr4di 2797 . . . . . . 7 (𝑓 = 𝐺 → (TopOpen‘𝑓) = 𝐽)
128, 11sylan9eqr 2801 . . . . . 6 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → 𝑗 = 𝐽)
1312, 12oveq12d 7273 . . . . 5 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → (𝑗 Cn 𝑗) = (𝐽 Cn 𝐽))
147, 13eleq12d 2833 . . . 4 ((𝑓 = 𝐺𝑗 = (TopOpen‘𝑓)) → ((invg𝑓) ∈ (𝑗 Cn 𝑗) ↔ 𝐼 ∈ (𝐽 Cn 𝐽)))
153, 14sbcied 3756 . . 3 (𝑓 = 𝐺 → ([(TopOpen‘𝑓) / 𝑗](invg𝑓) ∈ (𝑗 Cn 𝑗) ↔ 𝐼 ∈ (𝐽 Cn 𝐽)))
16 df-tgp 23132 . . 3 TopGrp = {𝑓 ∈ (Grp ∩ TopMnd) ∣ [(TopOpen‘𝑓) / 𝑗](invg𝑓) ∈ (𝑗 Cn 𝑗)}
1715, 16elrab2 3620 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ (Grp ∩ TopMnd) ∧ 𝐼 ∈ (𝐽 Cn 𝐽)))
18 df-3an 1087 . 2 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ (𝐽 Cn 𝐽)) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd) ∧ 𝐼 ∈ (𝐽 Cn 𝐽)))
192, 17, 183bitr4i 302 1 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ (𝐽 Cn 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  [wsbc 3711  cin 3882  cfv 6418  (class class class)co 7255  TopOpenctopn 17049  Grpcgrp 18492  invgcminusg 18493   Cn ccn 22283  TopMndctmd 23129  TopGrpctgp 23130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-tgp 23132
This theorem is referenced by:  tgpgrp  23137  tgptmd  23138  tgpinv  23144  istgp2  23150  oppgtgp  23157  subgtgp  23164  symgtgp  23165  prdstgpd  23184  tlmtgp  23255  nrgtdrg  23763
  Copyright terms: Public domain W3C validator