| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > istgp | Structured version Visualization version GIF version | ||
| Description: The predicate "is a topological group". Definition 1 of [BourbakiTop1] p. III.1. (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| istgp.1 | ⊢ 𝐽 = (TopOpen‘𝐺) |
| istgp.2 | ⊢ 𝐼 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| istgp | ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ (𝐽 Cn 𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3933 | . . 3 ⊢ (𝐺 ∈ (Grp ∩ TopMnd) ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd)) | |
| 2 | 1 | anbi1i 624 | . 2 ⊢ ((𝐺 ∈ (Grp ∩ TopMnd) ∧ 𝐼 ∈ (𝐽 Cn 𝐽)) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd) ∧ 𝐼 ∈ (𝐽 Cn 𝐽))) |
| 3 | fvexd 6876 | . . . 4 ⊢ (𝑓 = 𝐺 → (TopOpen‘𝑓) ∈ V) | |
| 4 | simpl 482 | . . . . . . 7 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → 𝑓 = 𝐺) | |
| 5 | 4 | fveq2d 6865 | . . . . . 6 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → (invg‘𝑓) = (invg‘𝐺)) |
| 6 | istgp.2 | . . . . . 6 ⊢ 𝐼 = (invg‘𝐺) | |
| 7 | 5, 6 | eqtr4di 2783 | . . . . 5 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → (invg‘𝑓) = 𝐼) |
| 8 | id 22 | . . . . . . 7 ⊢ (𝑗 = (TopOpen‘𝑓) → 𝑗 = (TopOpen‘𝑓)) | |
| 9 | fveq2 6861 | . . . . . . . 8 ⊢ (𝑓 = 𝐺 → (TopOpen‘𝑓) = (TopOpen‘𝐺)) | |
| 10 | istgp.1 | . . . . . . . 8 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 11 | 9, 10 | eqtr4di 2783 | . . . . . . 7 ⊢ (𝑓 = 𝐺 → (TopOpen‘𝑓) = 𝐽) |
| 12 | 8, 11 | sylan9eqr 2787 | . . . . . 6 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → 𝑗 = 𝐽) |
| 13 | 12, 12 | oveq12d 7408 | . . . . 5 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → (𝑗 Cn 𝑗) = (𝐽 Cn 𝐽)) |
| 14 | 7, 13 | eleq12d 2823 | . . . 4 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → ((invg‘𝑓) ∈ (𝑗 Cn 𝑗) ↔ 𝐼 ∈ (𝐽 Cn 𝐽))) |
| 15 | 3, 14 | sbcied 3800 | . . 3 ⊢ (𝑓 = 𝐺 → ([(TopOpen‘𝑓) / 𝑗](invg‘𝑓) ∈ (𝑗 Cn 𝑗) ↔ 𝐼 ∈ (𝐽 Cn 𝐽))) |
| 16 | df-tgp 23967 | . . 3 ⊢ TopGrp = {𝑓 ∈ (Grp ∩ TopMnd) ∣ [(TopOpen‘𝑓) / 𝑗](invg‘𝑓) ∈ (𝑗 Cn 𝑗)} | |
| 17 | 15, 16 | elrab2 3665 | . 2 ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ (Grp ∩ TopMnd) ∧ 𝐼 ∈ (𝐽 Cn 𝐽))) |
| 18 | df-3an 1088 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ (𝐽 Cn 𝐽)) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd) ∧ 𝐼 ∈ (𝐽 Cn 𝐽))) | |
| 19 | 2, 17, 18 | 3bitr4i 303 | 1 ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ (𝐽 Cn 𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3450 [wsbc 3756 ∩ cin 3916 ‘cfv 6514 (class class class)co 7390 TopOpenctopn 17391 Grpcgrp 18872 invgcminusg 18873 Cn ccn 23118 TopMndctmd 23964 TopGrpctgp 23965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-tgp 23967 |
| This theorem is referenced by: tgpgrp 23972 tgptmd 23973 tgpinv 23979 istgp2 23985 oppgtgp 23992 subgtgp 23999 symgtgp 24000 prdstgpd 24019 tlmtgp 24090 nrgtdrg 24588 |
| Copyright terms: Public domain | W3C validator |