Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > istgp | Structured version Visualization version GIF version |
Description: The predicate "is a topological group". Definition 1 of [BourbakiTop1] p. III.1. (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
istgp.1 | ⊢ 𝐽 = (TopOpen‘𝐺) |
istgp.2 | ⊢ 𝐼 = (invg‘𝐺) |
Ref | Expression |
---|---|
istgp | ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ (𝐽 Cn 𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3877 | . . 3 ⊢ (𝐺 ∈ (Grp ∩ TopMnd) ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd)) | |
2 | 1 | anbi1i 626 | . 2 ⊢ ((𝐺 ∈ (Grp ∩ TopMnd) ∧ 𝐼 ∈ (𝐽 Cn 𝐽)) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd) ∧ 𝐼 ∈ (𝐽 Cn 𝐽))) |
3 | fvexd 6679 | . . . 4 ⊢ (𝑓 = 𝐺 → (TopOpen‘𝑓) ∈ V) | |
4 | simpl 486 | . . . . . . 7 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → 𝑓 = 𝐺) | |
5 | 4 | fveq2d 6668 | . . . . . 6 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → (invg‘𝑓) = (invg‘𝐺)) |
6 | istgp.2 | . . . . . 6 ⊢ 𝐼 = (invg‘𝐺) | |
7 | 5, 6 | eqtr4di 2812 | . . . . 5 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → (invg‘𝑓) = 𝐼) |
8 | id 22 | . . . . . . 7 ⊢ (𝑗 = (TopOpen‘𝑓) → 𝑗 = (TopOpen‘𝑓)) | |
9 | fveq2 6664 | . . . . . . . 8 ⊢ (𝑓 = 𝐺 → (TopOpen‘𝑓) = (TopOpen‘𝐺)) | |
10 | istgp.1 | . . . . . . . 8 ⊢ 𝐽 = (TopOpen‘𝐺) | |
11 | 9, 10 | eqtr4di 2812 | . . . . . . 7 ⊢ (𝑓 = 𝐺 → (TopOpen‘𝑓) = 𝐽) |
12 | 8, 11 | sylan9eqr 2816 | . . . . . 6 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → 𝑗 = 𝐽) |
13 | 12, 12 | oveq12d 7175 | . . . . 5 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → (𝑗 Cn 𝑗) = (𝐽 Cn 𝐽)) |
14 | 7, 13 | eleq12d 2847 | . . . 4 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → ((invg‘𝑓) ∈ (𝑗 Cn 𝑗) ↔ 𝐼 ∈ (𝐽 Cn 𝐽))) |
15 | 3, 14 | sbcied 3742 | . . 3 ⊢ (𝑓 = 𝐺 → ([(TopOpen‘𝑓) / 𝑗](invg‘𝑓) ∈ (𝑗 Cn 𝑗) ↔ 𝐼 ∈ (𝐽 Cn 𝐽))) |
16 | df-tgp 22788 | . . 3 ⊢ TopGrp = {𝑓 ∈ (Grp ∩ TopMnd) ∣ [(TopOpen‘𝑓) / 𝑗](invg‘𝑓) ∈ (𝑗 Cn 𝑗)} | |
17 | 15, 16 | elrab2 3608 | . 2 ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ (Grp ∩ TopMnd) ∧ 𝐼 ∈ (𝐽 Cn 𝐽))) |
18 | df-3an 1087 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ (𝐽 Cn 𝐽)) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd) ∧ 𝐼 ∈ (𝐽 Cn 𝐽))) | |
19 | 2, 17, 18 | 3bitr4i 306 | 1 ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ (𝐽 Cn 𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 Vcvv 3410 [wsbc 3699 ∩ cin 3860 ‘cfv 6341 (class class class)co 7157 TopOpenctopn 16768 Grpcgrp 18184 invgcminusg 18185 Cn ccn 21939 TopMndctmd 22785 TopGrpctgp 22786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-nul 5181 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3700 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-nul 4229 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4803 df-br 5038 df-iota 6300 df-fv 6349 df-ov 7160 df-tgp 22788 |
This theorem is referenced by: tgpgrp 22793 tgptmd 22794 tgpinv 22800 istgp2 22806 oppgtgp 22813 subgtgp 22820 symgtgp 22821 prdstgpd 22840 tlmtgp 22911 nrgtdrg 23410 |
Copyright terms: Public domain | W3C validator |