| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > istgp | Structured version Visualization version GIF version | ||
| Description: The predicate "is a topological group". Definition 1 of [BourbakiTop1] p. III.1. (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| istgp.1 | ⊢ 𝐽 = (TopOpen‘𝐺) |
| istgp.2 | ⊢ 𝐼 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| istgp | ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ (𝐽 Cn 𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3930 | . . 3 ⊢ (𝐺 ∈ (Grp ∩ TopMnd) ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd)) | |
| 2 | 1 | anbi1i 624 | . 2 ⊢ ((𝐺 ∈ (Grp ∩ TopMnd) ∧ 𝐼 ∈ (𝐽 Cn 𝐽)) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd) ∧ 𝐼 ∈ (𝐽 Cn 𝐽))) |
| 3 | fvexd 6873 | . . . 4 ⊢ (𝑓 = 𝐺 → (TopOpen‘𝑓) ∈ V) | |
| 4 | simpl 482 | . . . . . . 7 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → 𝑓 = 𝐺) | |
| 5 | 4 | fveq2d 6862 | . . . . . 6 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → (invg‘𝑓) = (invg‘𝐺)) |
| 6 | istgp.2 | . . . . . 6 ⊢ 𝐼 = (invg‘𝐺) | |
| 7 | 5, 6 | eqtr4di 2782 | . . . . 5 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → (invg‘𝑓) = 𝐼) |
| 8 | id 22 | . . . . . . 7 ⊢ (𝑗 = (TopOpen‘𝑓) → 𝑗 = (TopOpen‘𝑓)) | |
| 9 | fveq2 6858 | . . . . . . . 8 ⊢ (𝑓 = 𝐺 → (TopOpen‘𝑓) = (TopOpen‘𝐺)) | |
| 10 | istgp.1 | . . . . . . . 8 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 11 | 9, 10 | eqtr4di 2782 | . . . . . . 7 ⊢ (𝑓 = 𝐺 → (TopOpen‘𝑓) = 𝐽) |
| 12 | 8, 11 | sylan9eqr 2786 | . . . . . 6 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → 𝑗 = 𝐽) |
| 13 | 12, 12 | oveq12d 7405 | . . . . 5 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → (𝑗 Cn 𝑗) = (𝐽 Cn 𝐽)) |
| 14 | 7, 13 | eleq12d 2822 | . . . 4 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → ((invg‘𝑓) ∈ (𝑗 Cn 𝑗) ↔ 𝐼 ∈ (𝐽 Cn 𝐽))) |
| 15 | 3, 14 | sbcied 3797 | . . 3 ⊢ (𝑓 = 𝐺 → ([(TopOpen‘𝑓) / 𝑗](invg‘𝑓) ∈ (𝑗 Cn 𝑗) ↔ 𝐼 ∈ (𝐽 Cn 𝐽))) |
| 16 | df-tgp 23960 | . . 3 ⊢ TopGrp = {𝑓 ∈ (Grp ∩ TopMnd) ∣ [(TopOpen‘𝑓) / 𝑗](invg‘𝑓) ∈ (𝑗 Cn 𝑗)} | |
| 17 | 15, 16 | elrab2 3662 | . 2 ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ (Grp ∩ TopMnd) ∧ 𝐼 ∈ (𝐽 Cn 𝐽))) |
| 18 | df-3an 1088 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ (𝐽 Cn 𝐽)) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd) ∧ 𝐼 ∈ (𝐽 Cn 𝐽))) | |
| 19 | 2, 17, 18 | 3bitr4i 303 | 1 ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ (𝐽 Cn 𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3447 [wsbc 3753 ∩ cin 3913 ‘cfv 6511 (class class class)co 7387 TopOpenctopn 17384 Grpcgrp 18865 invgcminusg 18866 Cn ccn 23111 TopMndctmd 23957 TopGrpctgp 23958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-tgp 23960 |
| This theorem is referenced by: tgpgrp 23965 tgptmd 23966 tgpinv 23972 istgp2 23978 oppgtgp 23985 subgtgp 23992 symgtgp 23993 prdstgpd 24012 tlmtgp 24083 nrgtdrg 24581 |
| Copyright terms: Public domain | W3C validator |