| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > topnfn | Structured version Visualization version GIF version | ||
| Description: The topology extractor function is a function on the universe. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| topnfn | ⊢ TopOpen Fn V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7382 | . 2 ⊢ ((TopSet‘𝑤) ↾t (Base‘𝑤)) ∈ V | |
| 2 | df-topn 17327 | . 2 ⊢ TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤))) | |
| 3 | 1, 2 | fnmpti 6625 | 1 ⊢ TopOpen Fn V |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3436 Fn wfn 6477 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 TopSetcts 17167 ↾t crest 17324 TopOpenctopn 17325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fn 6485 df-fv 6490 df-ov 7352 df-topn 17327 |
| This theorem is referenced by: prdstopn 23513 prdstps 23514 xpstopnlem2 23696 prdstmdd 24009 prdstgpd 24010 prdsxmslem2 24415 |
| Copyright terms: Public domain | W3C validator |