MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topnfn Structured version   Visualization version   GIF version

Theorem topnfn 17407
Description: The topology extractor function is a function on the universe. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
topnfn TopOpen Fn V

Proof of Theorem topnfn
StepHypRef Expression
1 ovex 7453 . 2 ((TopSet‘𝑤) ↾t (Base‘𝑤)) ∈ V
2 df-topn 17405 . 2 TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤)))
31, 2fnmpti 6698 1 TopOpen Fn V
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3471   Fn wfn 6543  cfv 6548  (class class class)co 7420  Basecbs 17180  TopSetcts 17239  t crest 17402  TopOpenctopn 17403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6500  df-fun 6550  df-fn 6551  df-fv 6556  df-ov 7423  df-topn 17405
This theorem is referenced by:  prdstopn  23545  prdstps  23546  xpstopnlem2  23728  prdstmdd  24041  prdstgpd  24042  prdsxmslem2  24451
  Copyright terms: Public domain W3C validator