MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topnfn Structured version   Visualization version   GIF version

Theorem topnfn 17329
Description: The topology extractor function is a function on the universe. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
topnfn TopOpen Fn V

Proof of Theorem topnfn
StepHypRef Expression
1 ovex 7382 . 2 ((TopSet‘𝑤) ↾t (Base‘𝑤)) ∈ V
2 df-topn 17327 . 2 TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤)))
31, 2fnmpti 6625 1 TopOpen Fn V
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3436   Fn wfn 6477  cfv 6482  (class class class)co 7349  Basecbs 17120  TopSetcts 17167  t crest 17324  TopOpenctopn 17325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fn 6485  df-fv 6490  df-ov 7352  df-topn 17327
This theorem is referenced by:  prdstopn  23513  prdstps  23514  xpstopnlem2  23696  prdstmdd  24009  prdstgpd  24010  prdsxmslem2  24415
  Copyright terms: Public domain W3C validator