MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topnfn Structured version   Visualization version   GIF version

Theorem topnfn 17329
Description: The topology extractor function is a function on the universe. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
topnfn TopOpen Fn V

Proof of Theorem topnfn
StepHypRef Expression
1 ovex 7379 . 2 ((TopSet‘𝑤) ↾t (Base‘𝑤)) ∈ V
2 df-topn 17327 . 2 TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤)))
31, 2fnmpti 6624 1 TopOpen Fn V
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3436   Fn wfn 6476  cfv 6481  (class class class)co 7346  Basecbs 17120  TopSetcts 17167  t crest 17324  TopOpenctopn 17325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489  df-ov 7349  df-topn 17327
This theorem is referenced by:  prdstopn  23543  prdstps  23544  xpstopnlem2  23726  prdstmdd  24039  prdstgpd  24040  prdsxmslem2  24444
  Copyright terms: Public domain W3C validator