MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topnval Structured version   Visualization version   GIF version

Theorem topnval 17397
Description: Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
topnval.1 𝐵 = (Base‘𝑊)
topnval.2 𝐽 = (TopSet‘𝑊)
Assertion
Ref Expression
topnval (𝐽t 𝐵) = (TopOpen‘𝑊)

Proof of Theorem topnval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6858 . . . . . 6 (𝑤 = 𝑊 → (TopSet‘𝑤) = (TopSet‘𝑊))
2 topnval.2 . . . . . 6 𝐽 = (TopSet‘𝑊)
31, 2eqtr4di 2782 . . . . 5 (𝑤 = 𝑊 → (TopSet‘𝑤) = 𝐽)
4 fveq2 6858 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
5 topnval.1 . . . . . 6 𝐵 = (Base‘𝑊)
64, 5eqtr4di 2782 . . . . 5 (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵)
73, 6oveq12d 7405 . . . 4 (𝑤 = 𝑊 → ((TopSet‘𝑤) ↾t (Base‘𝑤)) = (𝐽t 𝐵))
8 df-topn 17386 . . . 4 TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤)))
9 ovex 7420 . . . 4 (𝐽t 𝐵) ∈ V
107, 8, 9fvmpt 6968 . . 3 (𝑊 ∈ V → (TopOpen‘𝑊) = (𝐽t 𝐵))
1110eqcomd 2735 . 2 (𝑊 ∈ V → (𝐽t 𝐵) = (TopOpen‘𝑊))
12 0rest 17392 . . 3 (∅ ↾t 𝐵) = ∅
13 fvprc 6850 . . . . 5 𝑊 ∈ V → (TopSet‘𝑊) = ∅)
142, 13eqtrid 2776 . . . 4 𝑊 ∈ V → 𝐽 = ∅)
1514oveq1d 7402 . . 3 𝑊 ∈ V → (𝐽t 𝐵) = (∅ ↾t 𝐵))
16 fvprc 6850 . . 3 𝑊 ∈ V → (TopOpen‘𝑊) = ∅)
1712, 15, 163eqtr4a 2790 . 2 𝑊 ∈ V → (𝐽t 𝐵) = (TopOpen‘𝑊))
1811, 17pm2.61i 182 1 (𝐽t 𝐵) = (TopOpen‘𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3447  c0 4296  cfv 6511  (class class class)co 7387  Basecbs 17179  TopSetcts 17226  t crest 17383  TopOpenctopn 17384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-rest 17385  df-topn 17386
This theorem is referenced by:  topnid  17398  topnpropd  17399  efmndtopn  18810  oppgtopn  19285  symgtopn  19336  mgptopn  20057  resstopn  23073  prdstopn  23515  tuslem  24154  xrge0tsms  24723  om1opn  24936  xrge0tsmsd  33002  xrge0tmdALT  33936
  Copyright terms: Public domain W3C validator