| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > topnval | Structured version Visualization version GIF version | ||
| Description: Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| topnval.1 | ⊢ 𝐵 = (Base‘𝑊) |
| topnval.2 | ⊢ 𝐽 = (TopSet‘𝑊) |
| Ref | Expression |
|---|---|
| topnval | ⊢ (𝐽 ↾t 𝐵) = (TopOpen‘𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (TopSet‘𝑤) = (TopSet‘𝑊)) | |
| 2 | topnval.2 | . . . . . 6 ⊢ 𝐽 = (TopSet‘𝑊) | |
| 3 | 1, 2 | eqtr4di 2784 | . . . . 5 ⊢ (𝑤 = 𝑊 → (TopSet‘𝑤) = 𝐽) |
| 4 | fveq2 6822 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
| 5 | topnval.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
| 6 | 4, 5 | eqtr4di 2784 | . . . . 5 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵) |
| 7 | 3, 6 | oveq12d 7364 | . . . 4 ⊢ (𝑤 = 𝑊 → ((TopSet‘𝑤) ↾t (Base‘𝑤)) = (𝐽 ↾t 𝐵)) |
| 8 | df-topn 17327 | . . . 4 ⊢ TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤))) | |
| 9 | ovex 7379 | . . . 4 ⊢ (𝐽 ↾t 𝐵) ∈ V | |
| 10 | 7, 8, 9 | fvmpt 6929 | . . 3 ⊢ (𝑊 ∈ V → (TopOpen‘𝑊) = (𝐽 ↾t 𝐵)) |
| 11 | 10 | eqcomd 2737 | . 2 ⊢ (𝑊 ∈ V → (𝐽 ↾t 𝐵) = (TopOpen‘𝑊)) |
| 12 | 0rest 17333 | . . 3 ⊢ (∅ ↾t 𝐵) = ∅ | |
| 13 | fvprc 6814 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (TopSet‘𝑊) = ∅) | |
| 14 | 2, 13 | eqtrid 2778 | . . . 4 ⊢ (¬ 𝑊 ∈ V → 𝐽 = ∅) |
| 15 | 14 | oveq1d 7361 | . . 3 ⊢ (¬ 𝑊 ∈ V → (𝐽 ↾t 𝐵) = (∅ ↾t 𝐵)) |
| 16 | fvprc 6814 | . . 3 ⊢ (¬ 𝑊 ∈ V → (TopOpen‘𝑊) = ∅) | |
| 17 | 12, 15, 16 | 3eqtr4a 2792 | . 2 ⊢ (¬ 𝑊 ∈ V → (𝐽 ↾t 𝐵) = (TopOpen‘𝑊)) |
| 18 | 11, 17 | pm2.61i 182 | 1 ⊢ (𝐽 ↾t 𝐵) = (TopOpen‘𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4280 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 TopSetcts 17167 ↾t crest 17324 TopOpenctopn 17325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-rest 17326 df-topn 17327 |
| This theorem is referenced by: topnid 17339 topnpropd 17340 efmndtopn 18791 oppgtopn 19265 symgtopn 19318 mgptopn 20066 resstopn 23101 prdstopn 23543 tuslem 24181 xrge0tsms 24750 om1opn 24963 xrge0tsmsd 33042 xrge0tmdALT 33959 |
| Copyright terms: Public domain | W3C validator |