MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topnval Structured version   Visualization version   GIF version

Theorem topnval 17145
Description: Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
topnval.1 𝐵 = (Base‘𝑊)
topnval.2 𝐽 = (TopSet‘𝑊)
Assertion
Ref Expression
topnval (𝐽t 𝐵) = (TopOpen‘𝑊)

Proof of Theorem topnval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6774 . . . . . 6 (𝑤 = 𝑊 → (TopSet‘𝑤) = (TopSet‘𝑊))
2 topnval.2 . . . . . 6 𝐽 = (TopSet‘𝑊)
31, 2eqtr4di 2796 . . . . 5 (𝑤 = 𝑊 → (TopSet‘𝑤) = 𝐽)
4 fveq2 6774 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
5 topnval.1 . . . . . 6 𝐵 = (Base‘𝑊)
64, 5eqtr4di 2796 . . . . 5 (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵)
73, 6oveq12d 7293 . . . 4 (𝑤 = 𝑊 → ((TopSet‘𝑤) ↾t (Base‘𝑤)) = (𝐽t 𝐵))
8 df-topn 17134 . . . 4 TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤)))
9 ovex 7308 . . . 4 (𝐽t 𝐵) ∈ V
107, 8, 9fvmpt 6875 . . 3 (𝑊 ∈ V → (TopOpen‘𝑊) = (𝐽t 𝐵))
1110eqcomd 2744 . 2 (𝑊 ∈ V → (𝐽t 𝐵) = (TopOpen‘𝑊))
12 0rest 17140 . . 3 (∅ ↾t 𝐵) = ∅
13 fvprc 6766 . . . . 5 𝑊 ∈ V → (TopSet‘𝑊) = ∅)
142, 13eqtrid 2790 . . . 4 𝑊 ∈ V → 𝐽 = ∅)
1514oveq1d 7290 . . 3 𝑊 ∈ V → (𝐽t 𝐵) = (∅ ↾t 𝐵))
16 fvprc 6766 . . 3 𝑊 ∈ V → (TopOpen‘𝑊) = ∅)
1712, 15, 163eqtr4a 2804 . 2 𝑊 ∈ V → (𝐽t 𝐵) = (TopOpen‘𝑊))
1811, 17pm2.61i 182 1 (𝐽t 𝐵) = (TopOpen‘𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2106  Vcvv 3432  c0 4256  cfv 6433  (class class class)co 7275  Basecbs 16912  TopSetcts 16968  t crest 17131  TopOpenctopn 17132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-rest 17133  df-topn 17134
This theorem is referenced by:  topnid  17146  topnpropd  17147  efmndtopn  18522  oppgtopn  18960  symgtopn  19014  mgptopn  19732  resstopn  22337  prdstopn  22779  tuslem  23418  tuslemOLD  23419  xrge0tsms  23997  om1opn  24199  xrge0tsmsd  31317  xrge0tmdALT  31896
  Copyright terms: Public domain W3C validator