![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > topnval | Structured version Visualization version GIF version |
Description: Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
topnval.1 | ⊢ 𝐵 = (Base‘𝑊) |
topnval.2 | ⊢ 𝐽 = (TopSet‘𝑊) |
Ref | Expression |
---|---|
topnval | ⊢ (𝐽 ↾t 𝐵) = (TopOpen‘𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6907 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (TopSet‘𝑤) = (TopSet‘𝑊)) | |
2 | topnval.2 | . . . . . 6 ⊢ 𝐽 = (TopSet‘𝑊) | |
3 | 1, 2 | eqtr4di 2793 | . . . . 5 ⊢ (𝑤 = 𝑊 → (TopSet‘𝑤) = 𝐽) |
4 | fveq2 6907 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
5 | topnval.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
6 | 4, 5 | eqtr4di 2793 | . . . . 5 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵) |
7 | 3, 6 | oveq12d 7449 | . . . 4 ⊢ (𝑤 = 𝑊 → ((TopSet‘𝑤) ↾t (Base‘𝑤)) = (𝐽 ↾t 𝐵)) |
8 | df-topn 17470 | . . . 4 ⊢ TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤))) | |
9 | ovex 7464 | . . . 4 ⊢ (𝐽 ↾t 𝐵) ∈ V | |
10 | 7, 8, 9 | fvmpt 7016 | . . 3 ⊢ (𝑊 ∈ V → (TopOpen‘𝑊) = (𝐽 ↾t 𝐵)) |
11 | 10 | eqcomd 2741 | . 2 ⊢ (𝑊 ∈ V → (𝐽 ↾t 𝐵) = (TopOpen‘𝑊)) |
12 | 0rest 17476 | . . 3 ⊢ (∅ ↾t 𝐵) = ∅ | |
13 | fvprc 6899 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (TopSet‘𝑊) = ∅) | |
14 | 2, 13 | eqtrid 2787 | . . . 4 ⊢ (¬ 𝑊 ∈ V → 𝐽 = ∅) |
15 | 14 | oveq1d 7446 | . . 3 ⊢ (¬ 𝑊 ∈ V → (𝐽 ↾t 𝐵) = (∅ ↾t 𝐵)) |
16 | fvprc 6899 | . . 3 ⊢ (¬ 𝑊 ∈ V → (TopOpen‘𝑊) = ∅) | |
17 | 12, 15, 16 | 3eqtr4a 2801 | . 2 ⊢ (¬ 𝑊 ∈ V → (𝐽 ↾t 𝐵) = (TopOpen‘𝑊)) |
18 | 11, 17 | pm2.61i 182 | 1 ⊢ (𝐽 ↾t 𝐵) = (TopOpen‘𝑊) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∅c0 4339 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 TopSetcts 17304 ↾t crest 17467 TopOpenctopn 17468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-rest 17469 df-topn 17470 |
This theorem is referenced by: topnid 17482 topnpropd 17483 efmndtopn 18909 oppgtopn 19387 symgtopn 19439 mgptopn 20164 resstopn 23210 prdstopn 23652 tuslem 24291 tuslemOLD 24292 xrge0tsms 24870 om1opn 25083 xrge0tsmsd 33048 xrge0tmdALT 33907 |
Copyright terms: Public domain | W3C validator |