MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topnval Structured version   Visualization version   GIF version

Theorem topnval 17494
Description: Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
topnval.1 𝐵 = (Base‘𝑊)
topnval.2 𝐽 = (TopSet‘𝑊)
Assertion
Ref Expression
topnval (𝐽t 𝐵) = (TopOpen‘𝑊)

Proof of Theorem topnval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6920 . . . . . 6 (𝑤 = 𝑊 → (TopSet‘𝑤) = (TopSet‘𝑊))
2 topnval.2 . . . . . 6 𝐽 = (TopSet‘𝑊)
31, 2eqtr4di 2798 . . . . 5 (𝑤 = 𝑊 → (TopSet‘𝑤) = 𝐽)
4 fveq2 6920 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
5 topnval.1 . . . . . 6 𝐵 = (Base‘𝑊)
64, 5eqtr4di 2798 . . . . 5 (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵)
73, 6oveq12d 7466 . . . 4 (𝑤 = 𝑊 → ((TopSet‘𝑤) ↾t (Base‘𝑤)) = (𝐽t 𝐵))
8 df-topn 17483 . . . 4 TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤)))
9 ovex 7481 . . . 4 (𝐽t 𝐵) ∈ V
107, 8, 9fvmpt 7029 . . 3 (𝑊 ∈ V → (TopOpen‘𝑊) = (𝐽t 𝐵))
1110eqcomd 2746 . 2 (𝑊 ∈ V → (𝐽t 𝐵) = (TopOpen‘𝑊))
12 0rest 17489 . . 3 (∅ ↾t 𝐵) = ∅
13 fvprc 6912 . . . . 5 𝑊 ∈ V → (TopSet‘𝑊) = ∅)
142, 13eqtrid 2792 . . . 4 𝑊 ∈ V → 𝐽 = ∅)
1514oveq1d 7463 . . 3 𝑊 ∈ V → (𝐽t 𝐵) = (∅ ↾t 𝐵))
16 fvprc 6912 . . 3 𝑊 ∈ V → (TopOpen‘𝑊) = ∅)
1712, 15, 163eqtr4a 2806 . 2 𝑊 ∈ V → (𝐽t 𝐵) = (TopOpen‘𝑊))
1811, 17pm2.61i 182 1 (𝐽t 𝐵) = (TopOpen‘𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  cfv 6573  (class class class)co 7448  Basecbs 17258  TopSetcts 17317  t crest 17480  TopOpenctopn 17481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-rest 17482  df-topn 17483
This theorem is referenced by:  topnid  17495  topnpropd  17496  efmndtopn  18918  oppgtopn  19396  symgtopn  19448  mgptopn  20173  resstopn  23215  prdstopn  23657  tuslem  24296  tuslemOLD  24297  xrge0tsms  24875  om1opn  25088  xrge0tsmsd  33041  xrge0tmdALT  33892
  Copyright terms: Public domain W3C validator