![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > topnval | Structured version Visualization version GIF version |
Description: Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
topnval.1 | β’ π΅ = (Baseβπ) |
topnval.2 | β’ π½ = (TopSetβπ) |
Ref | Expression |
---|---|
topnval | β’ (π½ βΎt π΅) = (TopOpenβπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6891 | . . . . . 6 β’ (π€ = π β (TopSetβπ€) = (TopSetβπ)) | |
2 | topnval.2 | . . . . . 6 β’ π½ = (TopSetβπ) | |
3 | 1, 2 | eqtr4di 2790 | . . . . 5 β’ (π€ = π β (TopSetβπ€) = π½) |
4 | fveq2 6891 | . . . . . 6 β’ (π€ = π β (Baseβπ€) = (Baseβπ)) | |
5 | topnval.1 | . . . . . 6 β’ π΅ = (Baseβπ) | |
6 | 4, 5 | eqtr4di 2790 | . . . . 5 β’ (π€ = π β (Baseβπ€) = π΅) |
7 | 3, 6 | oveq12d 7426 | . . . 4 β’ (π€ = π β ((TopSetβπ€) βΎt (Baseβπ€)) = (π½ βΎt π΅)) |
8 | df-topn 17368 | . . . 4 β’ TopOpen = (π€ β V β¦ ((TopSetβπ€) βΎt (Baseβπ€))) | |
9 | ovex 7441 | . . . 4 β’ (π½ βΎt π΅) β V | |
10 | 7, 8, 9 | fvmpt 6998 | . . 3 β’ (π β V β (TopOpenβπ) = (π½ βΎt π΅)) |
11 | 10 | eqcomd 2738 | . 2 β’ (π β V β (π½ βΎt π΅) = (TopOpenβπ)) |
12 | 0rest 17374 | . . 3 β’ (β βΎt π΅) = β | |
13 | fvprc 6883 | . . . . 5 β’ (Β¬ π β V β (TopSetβπ) = β ) | |
14 | 2, 13 | eqtrid 2784 | . . . 4 β’ (Β¬ π β V β π½ = β ) |
15 | 14 | oveq1d 7423 | . . 3 β’ (Β¬ π β V β (π½ βΎt π΅) = (β βΎt π΅)) |
16 | fvprc 6883 | . . 3 β’ (Β¬ π β V β (TopOpenβπ) = β ) | |
17 | 12, 15, 16 | 3eqtr4a 2798 | . 2 β’ (Β¬ π β V β (π½ βΎt π΅) = (TopOpenβπ)) |
18 | 11, 17 | pm2.61i 182 | 1 β’ (π½ βΎt π΅) = (TopOpenβπ) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 = wceq 1541 β wcel 2106 Vcvv 3474 β c0 4322 βcfv 6543 (class class class)co 7408 Basecbs 17143 TopSetcts 17202 βΎt crest 17365 TopOpenctopn 17366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-rest 17367 df-topn 17368 |
This theorem is referenced by: topnid 17380 topnpropd 17381 efmndtopn 18763 oppgtopn 19219 symgtopn 19273 mgptopn 19998 resstopn 22689 prdstopn 23131 tuslem 23770 tuslemOLD 23771 xrge0tsms 24349 om1opn 24551 xrge0tsmsd 32204 xrge0tmdALT 32921 |
Copyright terms: Public domain | W3C validator |