| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > topnval | Structured version Visualization version GIF version | ||
| Description: Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| topnval.1 | ⊢ 𝐵 = (Base‘𝑊) |
| topnval.2 | ⊢ 𝐽 = (TopSet‘𝑊) |
| Ref | Expression |
|---|---|
| topnval | ⊢ (𝐽 ↾t 𝐵) = (TopOpen‘𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6840 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (TopSet‘𝑤) = (TopSet‘𝑊)) | |
| 2 | topnval.2 | . . . . . 6 ⊢ 𝐽 = (TopSet‘𝑊) | |
| 3 | 1, 2 | eqtr4di 2782 | . . . . 5 ⊢ (𝑤 = 𝑊 → (TopSet‘𝑤) = 𝐽) |
| 4 | fveq2 6840 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
| 5 | topnval.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
| 6 | 4, 5 | eqtr4di 2782 | . . . . 5 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵) |
| 7 | 3, 6 | oveq12d 7387 | . . . 4 ⊢ (𝑤 = 𝑊 → ((TopSet‘𝑤) ↾t (Base‘𝑤)) = (𝐽 ↾t 𝐵)) |
| 8 | df-topn 17362 | . . . 4 ⊢ TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤))) | |
| 9 | ovex 7402 | . . . 4 ⊢ (𝐽 ↾t 𝐵) ∈ V | |
| 10 | 7, 8, 9 | fvmpt 6950 | . . 3 ⊢ (𝑊 ∈ V → (TopOpen‘𝑊) = (𝐽 ↾t 𝐵)) |
| 11 | 10 | eqcomd 2735 | . 2 ⊢ (𝑊 ∈ V → (𝐽 ↾t 𝐵) = (TopOpen‘𝑊)) |
| 12 | 0rest 17368 | . . 3 ⊢ (∅ ↾t 𝐵) = ∅ | |
| 13 | fvprc 6832 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (TopSet‘𝑊) = ∅) | |
| 14 | 2, 13 | eqtrid 2776 | . . . 4 ⊢ (¬ 𝑊 ∈ V → 𝐽 = ∅) |
| 15 | 14 | oveq1d 7384 | . . 3 ⊢ (¬ 𝑊 ∈ V → (𝐽 ↾t 𝐵) = (∅ ↾t 𝐵)) |
| 16 | fvprc 6832 | . . 3 ⊢ (¬ 𝑊 ∈ V → (TopOpen‘𝑊) = ∅) | |
| 17 | 12, 15, 16 | 3eqtr4a 2790 | . 2 ⊢ (¬ 𝑊 ∈ V → (𝐽 ↾t 𝐵) = (TopOpen‘𝑊)) |
| 18 | 11, 17 | pm2.61i 182 | 1 ⊢ (𝐽 ↾t 𝐵) = (TopOpen‘𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∅c0 4292 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 TopSetcts 17202 ↾t crest 17359 TopOpenctopn 17360 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-rest 17361 df-topn 17362 |
| This theorem is referenced by: topnid 17374 topnpropd 17375 efmndtopn 18786 oppgtopn 19261 symgtopn 19312 mgptopn 20033 resstopn 23049 prdstopn 23491 tuslem 24130 xrge0tsms 24699 om1opn 24912 xrge0tsmsd 32975 xrge0tmdALT 33909 |
| Copyright terms: Public domain | W3C validator |