MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topnval Structured version   Visualization version   GIF version

Theorem topnval 17062
Description: Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
topnval.1 𝐵 = (Base‘𝑊)
topnval.2 𝐽 = (TopSet‘𝑊)
Assertion
Ref Expression
topnval (𝐽t 𝐵) = (TopOpen‘𝑊)

Proof of Theorem topnval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . . . . 6 (𝑤 = 𝑊 → (TopSet‘𝑤) = (TopSet‘𝑊))
2 topnval.2 . . . . . 6 𝐽 = (TopSet‘𝑊)
31, 2eqtr4di 2797 . . . . 5 (𝑤 = 𝑊 → (TopSet‘𝑤) = 𝐽)
4 fveq2 6756 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
5 topnval.1 . . . . . 6 𝐵 = (Base‘𝑊)
64, 5eqtr4di 2797 . . . . 5 (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵)
73, 6oveq12d 7273 . . . 4 (𝑤 = 𝑊 → ((TopSet‘𝑤) ↾t (Base‘𝑤)) = (𝐽t 𝐵))
8 df-topn 17051 . . . 4 TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤)))
9 ovex 7288 . . . 4 (𝐽t 𝐵) ∈ V
107, 8, 9fvmpt 6857 . . 3 (𝑊 ∈ V → (TopOpen‘𝑊) = (𝐽t 𝐵))
1110eqcomd 2744 . 2 (𝑊 ∈ V → (𝐽t 𝐵) = (TopOpen‘𝑊))
12 0rest 17057 . . 3 (∅ ↾t 𝐵) = ∅
13 fvprc 6748 . . . . 5 𝑊 ∈ V → (TopSet‘𝑊) = ∅)
142, 13eqtrid 2790 . . . 4 𝑊 ∈ V → 𝐽 = ∅)
1514oveq1d 7270 . . 3 𝑊 ∈ V → (𝐽t 𝐵) = (∅ ↾t 𝐵))
16 fvprc 6748 . . 3 𝑊 ∈ V → (TopOpen‘𝑊) = ∅)
1712, 15, 163eqtr4a 2805 . 2 𝑊 ∈ V → (𝐽t 𝐵) = (TopOpen‘𝑊))
1811, 17pm2.61i 182 1 (𝐽t 𝐵) = (TopOpen‘𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  cfv 6418  (class class class)co 7255  Basecbs 16840  TopSetcts 16894  t crest 17048  TopOpenctopn 17049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-rest 17050  df-topn 17051
This theorem is referenced by:  topnid  17063  topnpropd  17064  efmndtopn  18437  oppgtopn  18875  symgtopn  18929  mgptopn  19647  resstopn  22245  prdstopn  22687  tuslem  23326  tuslemOLD  23327  xrge0tsms  23903  om1opn  24105  xrge0tsmsd  31219  xrge0tmdALT  31798
  Copyright terms: Public domain W3C validator