Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > topnval | Structured version Visualization version GIF version |
Description: Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
topnval.1 | ⊢ 𝐵 = (Base‘𝑊) |
topnval.2 | ⊢ 𝐽 = (TopSet‘𝑊) |
Ref | Expression |
---|---|
topnval | ⊢ (𝐽 ↾t 𝐵) = (TopOpen‘𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6774 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (TopSet‘𝑤) = (TopSet‘𝑊)) | |
2 | topnval.2 | . . . . . 6 ⊢ 𝐽 = (TopSet‘𝑊) | |
3 | 1, 2 | eqtr4di 2796 | . . . . 5 ⊢ (𝑤 = 𝑊 → (TopSet‘𝑤) = 𝐽) |
4 | fveq2 6774 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
5 | topnval.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
6 | 4, 5 | eqtr4di 2796 | . . . . 5 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵) |
7 | 3, 6 | oveq12d 7293 | . . . 4 ⊢ (𝑤 = 𝑊 → ((TopSet‘𝑤) ↾t (Base‘𝑤)) = (𝐽 ↾t 𝐵)) |
8 | df-topn 17134 | . . . 4 ⊢ TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤))) | |
9 | ovex 7308 | . . . 4 ⊢ (𝐽 ↾t 𝐵) ∈ V | |
10 | 7, 8, 9 | fvmpt 6875 | . . 3 ⊢ (𝑊 ∈ V → (TopOpen‘𝑊) = (𝐽 ↾t 𝐵)) |
11 | 10 | eqcomd 2744 | . 2 ⊢ (𝑊 ∈ V → (𝐽 ↾t 𝐵) = (TopOpen‘𝑊)) |
12 | 0rest 17140 | . . 3 ⊢ (∅ ↾t 𝐵) = ∅ | |
13 | fvprc 6766 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (TopSet‘𝑊) = ∅) | |
14 | 2, 13 | eqtrid 2790 | . . . 4 ⊢ (¬ 𝑊 ∈ V → 𝐽 = ∅) |
15 | 14 | oveq1d 7290 | . . 3 ⊢ (¬ 𝑊 ∈ V → (𝐽 ↾t 𝐵) = (∅ ↾t 𝐵)) |
16 | fvprc 6766 | . . 3 ⊢ (¬ 𝑊 ∈ V → (TopOpen‘𝑊) = ∅) | |
17 | 12, 15, 16 | 3eqtr4a 2804 | . 2 ⊢ (¬ 𝑊 ∈ V → (𝐽 ↾t 𝐵) = (TopOpen‘𝑊)) |
18 | 11, 17 | pm2.61i 182 | 1 ⊢ (𝐽 ↾t 𝐵) = (TopOpen‘𝑊) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 TopSetcts 16968 ↾t crest 17131 TopOpenctopn 17132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-rest 17133 df-topn 17134 |
This theorem is referenced by: topnid 17146 topnpropd 17147 efmndtopn 18522 oppgtopn 18960 symgtopn 19014 mgptopn 19732 resstopn 22337 prdstopn 22779 tuslem 23418 tuslemOLD 23419 xrge0tsms 23997 om1opn 24199 xrge0tsmsd 31317 xrge0tmdALT 31896 |
Copyright terms: Public domain | W3C validator |