Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-trs Structured version   Visualization version   GIF version

Definition df-trs 36613
Description: Define the class of all transitive sets (versus the transitive class defined in df-tr 5188). It is used only by df-trrels 36614.

Note the similarity of the definitions of df-refs 36555, df-syms 36583 and df-trs 36613. (Contributed by Peter Mazsa, 17-Jul-2021.)

Assertion
Ref Expression
df-trs Trs = {𝑥 ∣ ((𝑥 ∩ (dom 𝑥 × ran 𝑥)) ∘ (𝑥 ∩ (dom 𝑥 × ran 𝑥))) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))}

Detailed syntax breakdown of Definition df-trs
StepHypRef Expression
1 ctrs 36273 . 2 class Trs
2 vx . . . . . . 7 setvar 𝑥
32cv 1538 . . . . . 6 class 𝑥
43cdm 5580 . . . . . . 7 class dom 𝑥
53crn 5581 . . . . . . 7 class ran 𝑥
64, 5cxp 5578 . . . . . 6 class (dom 𝑥 × ran 𝑥)
73, 6cin 3882 . . . . 5 class (𝑥 ∩ (dom 𝑥 × ran 𝑥))
87, 7ccom 5584 . . . 4 class ((𝑥 ∩ (dom 𝑥 × ran 𝑥)) ∘ (𝑥 ∩ (dom 𝑥 × ran 𝑥)))
9 cssr 36263 . . . 4 class S
108, 7, 9wbr 5070 . . 3 wff ((𝑥 ∩ (dom 𝑥 × ran 𝑥)) ∘ (𝑥 ∩ (dom 𝑥 × ran 𝑥))) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))
1110, 2cab 2715 . 2 class {𝑥 ∣ ((𝑥 ∩ (dom 𝑥 × ran 𝑥)) ∘ (𝑥 ∩ (dom 𝑥 × ran 𝑥))) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))}
121, 11wceq 1539 1 wff Trs = {𝑥 ∣ ((𝑥 ∩ (dom 𝑥 × ran 𝑥)) ∘ (𝑥 ∩ (dom 𝑥 × ran 𝑥))) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))}
Colors of variables: wff setvar class
This definition is referenced by:  dftrrels2  36616
  Copyright terms: Public domain W3C validator