Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dftrrels2 Structured version   Visualization version   GIF version

Theorem dftrrels2 38103
Description: Alternate definition of the class of transitive relations.

I'd prefer to define the class of transitive relations by using the definition of composition by [Suppes] p. 63. df-coSUP (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑥𝐴𝑢𝑢𝐵𝑦)} as opposed to the present definition of composition df-co 5681 (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑥𝐵𝑢𝑢𝐴𝑦)} because the Suppes definition keeps the order of 𝐴, 𝐵, 𝐶, 𝑅, 𝑆, 𝑇 by default in trsinxpSUP (((𝑅 ∩ (𝐴 × 𝐵)) ∘ (𝑆 ∩ (𝐵 × 𝐶))) ⊆ (𝑇 ∩ (𝐴 × 𝐶)) ↔ ∀𝑥𝐴𝑦𝐵 𝑧𝐶((𝑥𝑅𝑦𝑦𝑆𝑧) → 𝑥𝑇𝑧)) while the present definition of composition disarranges them: trsinxp (((𝑆 ∩ (𝐵 × 𝐶)) ∘ (𝑅 ∩ (𝐴 × 𝐵))) ⊆ (𝑇 ∩ (𝐴 × 𝐶 )) ↔ ∀𝑥𝐴𝑦𝐵𝑧𝐶((𝑥𝑅𝑦𝑦𝑆𝑧) → 𝑥𝑇𝑧) ). This is not mission critical to me, the implication of the Suppes definition is just more aesthetic, at least in the above case.

If we swap to the Suppes definition of class composition, I would define the present class of all transitive sets as df-trsSUP and I would consider to switch the definition of the class of cosets by 𝑅 from the present df-coss 37939 to a df-cossSUP. But perhaps there is a mathematical reason to keep the present definition of composition. (Contributed by Peter Mazsa, 21-Jul-2021.)

Assertion
Ref Expression
dftrrels2 TrRels = {𝑟 ∈ Rels ∣ (𝑟𝑟) ⊆ 𝑟}

Proof of Theorem dftrrels2
StepHypRef Expression
1 df-trrels 38101 . 2 TrRels = ( Trs ∩ Rels )
2 df-trs 38100 . 2 Trs = {𝑟 ∣ ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) S (𝑟 ∩ (dom 𝑟 × ran 𝑟))}
3 inex1g 5314 . . . . 5 (𝑟 ∈ V → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V)
43elv 3469 . . . 4 (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V
5 brssr 38029 . . . 4 ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V → (((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟))))
64, 5ax-mp 5 . . 3 (((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)))
7 elrels6 38018 . . . . . . 7 (𝑟 ∈ V → (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟))
87elv 3469 . . . . . 6 (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)
98biimpi 215 . . . . 5 (𝑟 ∈ Rels → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)
109, 9coeq12d 5861 . . . 4 (𝑟 ∈ Rels → ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) = (𝑟𝑟))
1110, 9sseq12d 4006 . . 3 (𝑟 ∈ Rels → (((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟𝑟) ⊆ 𝑟))
126, 11bitrid 282 . 2 (𝑟 ∈ Rels → (((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟𝑟) ⊆ 𝑟))
131, 2, 12abeqinbi 37781 1 TrRels = {𝑟 ∈ Rels ∣ (𝑟𝑟) ⊆ 𝑟}
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1533  wcel 2098  {crab 3419  Vcvv 3463  cin 3938  wss 3939   class class class wbr 5143   × cxp 5670  dom cdm 5672  ran crn 5673  ccom 5676   Rels crels 37707   S cssr 37708   Trs ctrs 37718   TrRels ctrrels 37719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-br 5144  df-opab 5206  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-rels 38013  df-ssr 38026  df-trs 38100  df-trrels 38101
This theorem is referenced by:  dftrrels3  38104  eltrrels2  38107  dfeqvrels2  38116
  Copyright terms: Public domain W3C validator