![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dftrrels2 | Structured version Visualization version GIF version |
Description: Alternate definition of
the class of transitive relations.
I'd prefer to define the class of transitive relations by using the definition of composition by [Suppes] p. 63. df-coSUP (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥𝐴𝑢 ∧ 𝑢𝐵𝑦)} as opposed to the present definition of composition df-co 5709 (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥𝐵𝑢 ∧ 𝑢𝐴𝑦)} because the Suppes definition keeps the order of 𝐴, 𝐵, 𝐶, 𝑅, 𝑆, 𝑇 by default in trsinxpSUP (((𝑅 ∩ (𝐴 × 𝐵)) ∘ (𝑆 ∩ (𝐵 × 𝐶))) ⊆ (𝑇 ∩ (𝐴 × 𝐶)) ↔ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵∀ 𝑧 ∈ 𝐶((𝑥𝑅𝑦 ∧ 𝑦𝑆𝑧) → 𝑥𝑇𝑧)) while the present definition of composition disarranges them: trsinxp (((𝑆 ∩ (𝐵 × 𝐶)) ∘ (𝑅 ∩ (𝐴 × 𝐵))) ⊆ (𝑇 ∩ (𝐴 × 𝐶 )) ↔ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵∀𝑧 ∈ 𝐶((𝑥𝑅𝑦 ∧ 𝑦𝑆𝑧) → 𝑥𝑇𝑧) ). This is not mission critical to me, the implication of the Suppes definition is just more aesthetic, at least in the above case. If we swap to the Suppes definition of class composition, I would define the present class of all transitive sets as df-trsSUP and I would consider to switch the definition of the class of cosets by 𝑅 from the present df-coss 38367 to a df-cossSUP. But perhaps there is a mathematical reason to keep the present definition of composition. (Contributed by Peter Mazsa, 21-Jul-2021.) |
Ref | Expression |
---|---|
dftrrels2 | ⊢ TrRels = {𝑟 ∈ Rels ∣ (𝑟 ∘ 𝑟) ⊆ 𝑟} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-trrels 38529 | . 2 ⊢ TrRels = ( Trs ∩ Rels ) | |
2 | df-trs 38528 | . 2 ⊢ Trs = {𝑟 ∣ ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) S (𝑟 ∩ (dom 𝑟 × ran 𝑟))} | |
3 | inex1g 5337 | . . . . 5 ⊢ (𝑟 ∈ V → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V) | |
4 | 3 | elv 3493 | . . . 4 ⊢ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V |
5 | brssr 38457 | . . . 4 ⊢ ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V → (((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)))) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ (((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) |
7 | elrels6 38446 | . . . . . . 7 ⊢ (𝑟 ∈ V → (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)) | |
8 | 7 | elv 3493 | . . . . . 6 ⊢ (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟) |
9 | 8 | biimpi 216 | . . . . 5 ⊢ (𝑟 ∈ Rels → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟) |
10 | 9, 9 | coeq12d 5889 | . . . 4 ⊢ (𝑟 ∈ Rels → ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) = (𝑟 ∘ 𝑟)) |
11 | 10, 9 | sseq12d 4042 | . . 3 ⊢ (𝑟 ∈ Rels → (((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟 ∘ 𝑟) ⊆ 𝑟)) |
12 | 6, 11 | bitrid 283 | . 2 ⊢ (𝑟 ∈ Rels → (((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟 ∘ 𝑟) ⊆ 𝑟)) |
13 | 1, 2, 12 | abeqinbi 38209 | 1 ⊢ TrRels = {𝑟 ∈ Rels ∣ (𝑟 ∘ 𝑟) ⊆ 𝑟} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 class class class wbr 5166 × cxp 5698 dom cdm 5700 ran crn 5701 ∘ ccom 5704 Rels crels 38137 S cssr 38138 Trs ctrs 38148 TrRels ctrrels 38149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-rels 38441 df-ssr 38454 df-trs 38528 df-trrels 38529 |
This theorem is referenced by: dftrrels3 38532 eltrrels2 38535 dfeqvrels2 38544 |
Copyright terms: Public domain | W3C validator |