Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dftrrels2 Structured version   Visualization version   GIF version

Theorem dftrrels2 38531
Description: Alternate definition of the class of transitive relations.

I'd prefer to define the class of transitive relations by using the definition of composition by [Suppes] p. 63. df-coSUP (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑥𝐴𝑢𝑢𝐵𝑦)} as opposed to the present definition of composition df-co 5709 (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑥𝐵𝑢𝑢𝐴𝑦)} because the Suppes definition keeps the order of 𝐴, 𝐵, 𝐶, 𝑅, 𝑆, 𝑇 by default in trsinxpSUP (((𝑅 ∩ (𝐴 × 𝐵)) ∘ (𝑆 ∩ (𝐵 × 𝐶))) ⊆ (𝑇 ∩ (𝐴 × 𝐶)) ↔ ∀𝑥𝐴𝑦𝐵 𝑧𝐶((𝑥𝑅𝑦𝑦𝑆𝑧) → 𝑥𝑇𝑧)) while the present definition of composition disarranges them: trsinxp (((𝑆 ∩ (𝐵 × 𝐶)) ∘ (𝑅 ∩ (𝐴 × 𝐵))) ⊆ (𝑇 ∩ (𝐴 × 𝐶 )) ↔ ∀𝑥𝐴𝑦𝐵𝑧𝐶((𝑥𝑅𝑦𝑦𝑆𝑧) → 𝑥𝑇𝑧) ). This is not mission critical to me, the implication of the Suppes definition is just more aesthetic, at least in the above case.

If we swap to the Suppes definition of class composition, I would define the present class of all transitive sets as df-trsSUP and I would consider to switch the definition of the class of cosets by 𝑅 from the present df-coss 38367 to a df-cossSUP. But perhaps there is a mathematical reason to keep the present definition of composition. (Contributed by Peter Mazsa, 21-Jul-2021.)

Assertion
Ref Expression
dftrrels2 TrRels = {𝑟 ∈ Rels ∣ (𝑟𝑟) ⊆ 𝑟}

Proof of Theorem dftrrels2
StepHypRef Expression
1 df-trrels 38529 . 2 TrRels = ( Trs ∩ Rels )
2 df-trs 38528 . 2 Trs = {𝑟 ∣ ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) S (𝑟 ∩ (dom 𝑟 × ran 𝑟))}
3 inex1g 5337 . . . . 5 (𝑟 ∈ V → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V)
43elv 3493 . . . 4 (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V
5 brssr 38457 . . . 4 ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V → (((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟))))
64, 5ax-mp 5 . . 3 (((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)))
7 elrels6 38446 . . . . . . 7 (𝑟 ∈ V → (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟))
87elv 3493 . . . . . 6 (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)
98biimpi 216 . . . . 5 (𝑟 ∈ Rels → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)
109, 9coeq12d 5889 . . . 4 (𝑟 ∈ Rels → ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) = (𝑟𝑟))
1110, 9sseq12d 4042 . . 3 (𝑟 ∈ Rels → (((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟𝑟) ⊆ 𝑟))
126, 11bitrid 283 . 2 (𝑟 ∈ Rels → (((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟𝑟) ⊆ 𝑟))
131, 2, 12abeqinbi 38209 1 TrRels = {𝑟 ∈ Rels ∣ (𝑟𝑟) ⊆ 𝑟}
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  cin 3975  wss 3976   class class class wbr 5166   × cxp 5698  dom cdm 5700  ran crn 5701  ccom 5704   Rels crels 38137   S cssr 38138   Trs ctrs 38148   TrRels ctrrels 38149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-rels 38441  df-ssr 38454  df-trs 38528  df-trrels 38529
This theorem is referenced by:  dftrrels3  38532  eltrrels2  38535  dfeqvrels2  38544
  Copyright terms: Public domain W3C validator