Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dftrrels2 Structured version   Visualization version   GIF version

Theorem dftrrels2 35810
Description: Alternate definition of the class of transitive relations.

I'd prefer to define the class of transitive relations by using the definition of composition by [Suppes] p. 63. df-coSUP (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑥𝐴𝑢𝑢𝐵𝑦)} as opposed to the present definition of composition df-co 5563 (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑥𝐵𝑢𝑢𝐴𝑦)} because the Suppes definition keeps the order of 𝐴, 𝐵, 𝐶, 𝑅, 𝑆, 𝑇 by default in trsinxpSUP (((𝑅 ∩ (𝐴 × 𝐵)) ∘ (𝑆 ∩ (𝐵 × 𝐶))) ⊆ (𝑇 ∩ (𝐴 × 𝐶)) ↔ ∀𝑥𝐴𝑦𝐵 𝑧𝐶((𝑥𝑅𝑦𝑦𝑆𝑧) → 𝑥𝑇𝑧)) while the present definition of composition disarranges them: trsinxp (((𝑆 ∩ (𝐵 × 𝐶)) ∘ (𝑅 ∩ (𝐴 × 𝐵))) ⊆ (𝑇 ∩ (𝐴 × 𝐶 )) ↔ ∀𝑥𝐴𝑦𝐵𝑧𝐶((𝑥𝑅𝑦𝑦𝑆𝑧) → 𝑥𝑇𝑧) ). This is not mission critical to me, the implication of the Suppes definition is just more aesthetic, at least in the above case.

If we swap to the Suppes definition of class composition, I would define the present class of all transitive sets as df-trsSUP and I would consider to switch the definition of the class of cosets by 𝑅 from the present df-coss 35658 to a df-cossSUP. But perhaps there is a mathematical reason to keep the present definition of composition. (Contributed by Peter Mazsa, 21-Jul-2021.)

Assertion
Ref Expression
dftrrels2 TrRels = {𝑟 ∈ Rels ∣ (𝑟𝑟) ⊆ 𝑟}

Proof of Theorem dftrrels2
StepHypRef Expression
1 df-trrels 35808 . 2 TrRels = ( Trs ∩ Rels )
2 df-trs 35807 . 2 Trs = {𝑟 ∣ ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) S (𝑟 ∩ (dom 𝑟 × ran 𝑟))}
3 inex1g 5222 . . . . 5 (𝑟 ∈ V → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V)
43elv 3499 . . . 4 (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V
5 brssr 35740 . . . 4 ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V → (((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟))))
64, 5ax-mp 5 . . 3 (((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)))
7 elrels6 35729 . . . . . . 7 (𝑟 ∈ V → (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟))
87elv 3499 . . . . . 6 (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)
98biimpi 218 . . . . 5 (𝑟 ∈ Rels → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)
109, 9coeq12d 5734 . . . 4 (𝑟 ∈ Rels → ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) = (𝑟𝑟))
1110, 9sseq12d 3999 . . 3 (𝑟 ∈ Rels → (((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟𝑟) ⊆ 𝑟))
126, 11syl5bb 285 . 2 (𝑟 ∈ Rels → (((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟𝑟) ⊆ 𝑟))
131, 2, 12abeqinbi 35514 1 TrRels = {𝑟 ∈ Rels ∣ (𝑟𝑟) ⊆ 𝑟}
Colors of variables: wff setvar class
Syntax hints:  wb 208   = wceq 1533  wcel 2110  {crab 3142  Vcvv 3494  cin 3934  wss 3935   class class class wbr 5065   × cxp 5552  dom cdm 5554  ran crn 5555  ccom 5558   Rels crels 35454   S cssr 35455   Trs ctrs 35465   TrRels ctrrels 35466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pr 5329
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-br 5066  df-opab 5128  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-rels 35724  df-ssr 35737  df-trs 35807  df-trrels 35808
This theorem is referenced by:  dftrrels3  35811  eltrrels2  35814  dfeqvrels2  35822
  Copyright terms: Public domain W3C validator