Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dftrrels2 | Structured version Visualization version GIF version |
Description: Alternate definition of
the class of transitive relations.
I'd prefer to define the class of transitive relations by using the definition of composition by [Suppes] p. 63. df-coSUP (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥𝐴𝑢 ∧ 𝑢𝐵𝑦)} as opposed to the present definition of composition df-co 5589 (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥𝐵𝑢 ∧ 𝑢𝐴𝑦)} because the Suppes definition keeps the order of 𝐴, 𝐵, 𝐶, 𝑅, 𝑆, 𝑇 by default in trsinxpSUP (((𝑅 ∩ (𝐴 × 𝐵)) ∘ (𝑆 ∩ (𝐵 × 𝐶))) ⊆ (𝑇 ∩ (𝐴 × 𝐶)) ↔ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵∀ 𝑧 ∈ 𝐶((𝑥𝑅𝑦 ∧ 𝑦𝑆𝑧) → 𝑥𝑇𝑧)) while the present definition of composition disarranges them: trsinxp (((𝑆 ∩ (𝐵 × 𝐶)) ∘ (𝑅 ∩ (𝐴 × 𝐵))) ⊆ (𝑇 ∩ (𝐴 × 𝐶 )) ↔ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵∀𝑧 ∈ 𝐶((𝑥𝑅𝑦 ∧ 𝑦𝑆𝑧) → 𝑥𝑇𝑧) ). This is not mission critical to me, the implication of the Suppes definition is just more aesthetic, at least in the above case. If we swap to the Suppes definition of class composition, I would define the present class of all transitive sets as df-trsSUP and I would consider to switch the definition of the class of cosets by 𝑅 from the present df-coss 36464 to a df-cossSUP. But perhaps there is a mathematical reason to keep the present definition of composition. (Contributed by Peter Mazsa, 21-Jul-2021.) |
Ref | Expression |
---|---|
dftrrels2 | ⊢ TrRels = {𝑟 ∈ Rels ∣ (𝑟 ∘ 𝑟) ⊆ 𝑟} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-trrels 36614 | . 2 ⊢ TrRels = ( Trs ∩ Rels ) | |
2 | df-trs 36613 | . 2 ⊢ Trs = {𝑟 ∣ ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) S (𝑟 ∩ (dom 𝑟 × ran 𝑟))} | |
3 | inex1g 5238 | . . . . 5 ⊢ (𝑟 ∈ V → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V) | |
4 | 3 | elv 3428 | . . . 4 ⊢ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V |
5 | brssr 36546 | . . . 4 ⊢ ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V → (((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)))) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ (((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) |
7 | elrels6 36535 | . . . . . . 7 ⊢ (𝑟 ∈ V → (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)) | |
8 | 7 | elv 3428 | . . . . . 6 ⊢ (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟) |
9 | 8 | biimpi 215 | . . . . 5 ⊢ (𝑟 ∈ Rels → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟) |
10 | 9, 9 | coeq12d 5762 | . . . 4 ⊢ (𝑟 ∈ Rels → ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) = (𝑟 ∘ 𝑟)) |
11 | 10, 9 | sseq12d 3950 | . . 3 ⊢ (𝑟 ∈ Rels → (((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟 ∘ 𝑟) ⊆ 𝑟)) |
12 | 6, 11 | syl5bb 282 | . 2 ⊢ (𝑟 ∈ Rels → (((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∘ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟 ∘ 𝑟) ⊆ 𝑟)) |
13 | 1, 2, 12 | abeqinbi 36320 | 1 ⊢ TrRels = {𝑟 ∈ Rels ∣ (𝑟 ∘ 𝑟) ⊆ 𝑟} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 {crab 3067 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 class class class wbr 5070 × cxp 5578 dom cdm 5580 ran crn 5581 ∘ ccom 5584 Rels crels 36262 S cssr 36263 Trs ctrs 36273 TrRels ctrrels 36274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-rels 36530 df-ssr 36543 df-trs 36613 df-trrels 36614 |
This theorem is referenced by: dftrrels3 36617 eltrrels2 36620 dfeqvrels2 36628 |
Copyright terms: Public domain | W3C validator |