Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrefsymrelsrel Structured version   Visualization version   GIF version

Theorem elrefsymrelsrel 37980
Description: For sets, being an element of the class of reflexive and symmetric relations is equivalent to satisfying the reflexive and symmetric relation predicates. (Contributed by Peter Mazsa, 23-Aug-2021.)
Assertion
Ref Expression
elrefsymrelsrel (𝑅𝑉 → (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ( RefRel 𝑅 ∧ SymRel 𝑅)))

Proof of Theorem elrefsymrelsrel
StepHypRef Expression
1 elin 3960 . 2 (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ (𝑅 ∈ RefRels ∧ 𝑅 ∈ SymRels ))
2 elrefrelsrel 37929 . . 3 (𝑅𝑉 → (𝑅 ∈ RefRels ↔ RefRel 𝑅))
3 elsymrelsrel 37966 . . 3 (𝑅𝑉 → (𝑅 ∈ SymRels ↔ SymRel 𝑅))
42, 3anbi12d 630 . 2 (𝑅𝑉 → ((𝑅 ∈ RefRels ∧ 𝑅 ∈ SymRels ) ↔ ( RefRel 𝑅 ∧ SymRel 𝑅)))
51, 4bitrid 283 1 (𝑅𝑉 → (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ( RefRel 𝑅 ∧ SymRel 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2099  cin 3943   RefRels crefrels 37588   RefRel wrefrel 37589   SymRels csymrels 37594   SymRel wsymrel 37595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-xp 5678  df-rel 5679  df-cnv 5680  df-dm 5682  df-rn 5683  df-res 5684  df-rels 37894  df-ssr 37907  df-refs 37919  df-refrels 37920  df-refrel 37921  df-syms 37951  df-symrels 37952  df-symrel 37953
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator