| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elrefsymrelsrel | Structured version Visualization version GIF version | ||
| Description: For sets, being an element of the class of reflexive and symmetric relations is equivalent to satisfying the reflexive and symmetric relation predicates. (Contributed by Peter Mazsa, 23-Aug-2021.) |
| Ref | Expression |
|---|---|
| elrefsymrelsrel | ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ( RefRel 𝑅 ∧ SymRel 𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3933 | . 2 ⊢ (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ (𝑅 ∈ RefRels ∧ 𝑅 ∈ SymRels )) | |
| 2 | elrefrelsrel 38518 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ RefRels ↔ RefRel 𝑅)) | |
| 3 | elsymrelsrel 38555 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ SymRels ↔ SymRel 𝑅)) | |
| 4 | 2, 3 | anbi12d 632 | . 2 ⊢ (𝑅 ∈ 𝑉 → ((𝑅 ∈ RefRels ∧ 𝑅 ∈ SymRels ) ↔ ( RefRel 𝑅 ∧ SymRel 𝑅))) |
| 5 | 1, 4 | bitrid 283 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ( RefRel 𝑅 ∧ SymRel 𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∩ cin 3916 RefRels crefrels 38181 RefRel wrefrel 38182 SymRels csymrels 38187 SymRel wsymrel 38188 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-rels 38483 df-ssr 38496 df-refs 38508 df-refrels 38509 df-refrel 38510 df-syms 38540 df-symrels 38541 df-symrel 38542 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |