Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrefsymrelsrel Structured version   Visualization version   GIF version

Theorem elrefsymrelsrel 38527
Description: For sets, being an element of the class of reflexive and symmetric relations is equivalent to satisfying the reflexive and symmetric relation predicates. (Contributed by Peter Mazsa, 23-Aug-2021.)
Assertion
Ref Expression
elrefsymrelsrel (𝑅𝑉 → (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ( RefRel 𝑅 ∧ SymRel 𝑅)))

Proof of Theorem elrefsymrelsrel
StepHypRef Expression
1 elin 3992 . 2 (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ (𝑅 ∈ RefRels ∧ 𝑅 ∈ SymRels ))
2 elrefrelsrel 38476 . . 3 (𝑅𝑉 → (𝑅 ∈ RefRels ↔ RefRel 𝑅))
3 elsymrelsrel 38513 . . 3 (𝑅𝑉 → (𝑅 ∈ SymRels ↔ SymRel 𝑅))
42, 3anbi12d 631 . 2 (𝑅𝑉 → ((𝑅 ∈ RefRels ∧ 𝑅 ∈ SymRels ) ↔ ( RefRel 𝑅 ∧ SymRel 𝑅)))
51, 4bitrid 283 1 (𝑅𝑉 → (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ( RefRel 𝑅 ∧ SymRel 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  cin 3975   RefRels crefrels 38140   RefRel wrefrel 38141   SymRels csymrels 38146   SymRel wsymrel 38147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-rels 38441  df-ssr 38454  df-refs 38466  df-refrels 38467  df-refrel 38468  df-syms 38498  df-symrels 38499  df-symrel 38500
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator