Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrefsymrelsrel | Structured version Visualization version GIF version |
Description: For sets, being an element of the class of reflexive and symmetric relations is equivalent to satisfying the reflexive and symmetric relation predicates. (Contributed by Peter Mazsa, 23-Aug-2021.) |
Ref | Expression |
---|---|
elrefsymrelsrel | ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ( RefRel 𝑅 ∧ SymRel 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3903 | . 2 ⊢ (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ (𝑅 ∈ RefRels ∧ 𝑅 ∈ SymRels )) | |
2 | elrefrelsrel 36637 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ RefRels ↔ RefRel 𝑅)) | |
3 | elsymrelsrel 36671 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ SymRels ↔ SymRel 𝑅)) | |
4 | 2, 3 | anbi12d 631 | . 2 ⊢ (𝑅 ∈ 𝑉 → ((𝑅 ∈ RefRels ∧ 𝑅 ∈ SymRels ) ↔ ( RefRel 𝑅 ∧ SymRel 𝑅))) |
5 | 1, 4 | syl5bb 283 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ( RefRel 𝑅 ∧ SymRel 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∩ cin 3886 RefRels crefrels 36338 RefRel wrefrel 36339 SymRels csymrels 36344 SymRel wsymrel 36345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-rels 36603 df-ssr 36616 df-refs 36628 df-refrels 36629 df-refrel 36630 df-syms 36656 df-symrels 36657 df-symrel 36658 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |