Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-tr | Structured version Visualization version GIF version |
Description: Define the transitive class predicate. Not to be confused with a transitive relation (see cotr 6005). Definition of [Enderton] p. 71 extended to arbitrary classes. For alternate definitions, see dftr2 5187 (which is suggestive of the word "transitive"), dftr3 5189, dftr4 5190, dftr5 5188, and (when 𝐴 is a set) unisuc 6324. The term "complete" is used instead of "transitive" in Definition 3 of [Suppes] p. 130. (Contributed by NM, 29-Aug-1993.) |
Ref | Expression |
---|---|
df-tr | ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | wtr 5185 | . 2 wff Tr 𝐴 |
3 | 1 | cuni 4836 | . . 3 class ∪ 𝐴 |
4 | 3, 1 | wss 3884 | . 2 wff ∪ 𝐴 ⊆ 𝐴 |
5 | 2, 4 | wb 209 | 1 wff (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) |
Colors of variables: wff setvar class |
This definition is referenced by: dftr2 5187 dftr4 5190 treq 5191 trv 5197 pwtr 5361 unisuc 6324 orduniss 6342 onuninsuci 7659 trcl 9392 tc2 9406 r1tr2 9441 tskuni 10445 untangtr 33530 hfuni 34388 |
Copyright terms: Public domain | W3C validator |