MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-tr Structured version   Visualization version   GIF version

Definition df-tr 5197
Description: Define the transitive class predicate. Not to be confused with a transitive relation (see cotr 6058). Definition of [Enderton] p. 71 extended to arbitrary classes. For alternate definitions, see dftr2 5198 (which is suggestive of the word "transitive"), dftr2c 5199, dftr3 5201, dftr4 5202, dftr5 5200, and (when 𝐴 is a set) unisuc 6387. The term "complete" is used instead of "transitive" in Definition 3 of [Suppes] p. 130. (Contributed by NM, 29-Aug-1993.)
Assertion
Ref Expression
df-tr (Tr 𝐴 𝐴𝐴)

Detailed syntax breakdown of Definition df-tr
StepHypRef Expression
1 cA . . 3 class 𝐴
21wtr 5196 . 2 wff Tr 𝐴
31cuni 4856 . . 3 class 𝐴
43, 1wss 3897 . 2 wff 𝐴𝐴
52, 4wb 206 1 wff (Tr 𝐴 𝐴𝐴)
Colors of variables: wff setvar class
This definition is referenced by:  dftr2  5198  dftr4  5202  treq  5203  trv  5209  pwtr  5391  unisucg  6386  orduniss  6405  onuninsuci  7770  trcl  9618  tc2  9630  r1tr2  9670  tskuni  10674  tz9.1regs  35130  untangtr  35758  hfuni  36228
  Copyright terms: Public domain W3C validator