| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-tr | Structured version Visualization version GIF version | ||
| Description: Define the transitive class predicate. Not to be confused with a transitive relation (see cotr 6099). Definition of [Enderton] p. 71 extended to arbitrary classes. For alternate definitions, see dftr2 5231 (which is suggestive of the word "transitive"), dftr2c 5232, dftr3 5235, dftr4 5236, dftr5 5233, and (when 𝐴 is a set) unisuc 6432. The term "complete" is used instead of "transitive" in Definition 3 of [Suppes] p. 130. (Contributed by NM, 29-Aug-1993.) |
| Ref | Expression |
|---|---|
| df-tr | ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | wtr 5229 | . 2 wff Tr 𝐴 |
| 3 | 1 | cuni 4883 | . . 3 class ∪ 𝐴 |
| 4 | 3, 1 | wss 3926 | . 2 wff ∪ 𝐴 ⊆ 𝐴 |
| 5 | 2, 4 | wb 206 | 1 wff (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dftr2 5231 dftr4 5236 treq 5237 trv 5243 pwtr 5427 unisucg 6431 orduniss 6450 onuninsuci 7833 trcl 9740 tc2 9754 r1tr2 9789 tskuni 10795 untangtr 35677 hfuni 36148 |
| Copyright terms: Public domain | W3C validator |