MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-tr Structured version   Visualization version   GIF version

Definition df-tr 5267
Description: Define the transitive class predicate. Not to be confused with a transitive relation (see cotr 6112). Definition of [Enderton] p. 71 extended to arbitrary classes. For alternate definitions, see dftr2 5268 (which is suggestive of the word "transitive"), dftr2c 5269, dftr3 5272, dftr4 5273, dftr5 5270, and (when 𝐴 is a set) unisuc 6444. The term "complete" is used instead of "transitive" in Definition 3 of [Suppes] p. 130. (Contributed by NM, 29-Aug-1993.)
Assertion
Ref Expression
df-tr (Tr 𝐴 𝐴𝐴)

Detailed syntax breakdown of Definition df-tr
StepHypRef Expression
1 cA . . 3 class 𝐴
21wtr 5266 . 2 wff Tr 𝐴
31cuni 4909 . . 3 class 𝐴
43, 1wss 3949 . 2 wff 𝐴𝐴
52, 4wb 205 1 wff (Tr 𝐴 𝐴𝐴)
Colors of variables: wff setvar class
This definition is referenced by:  dftr2  5268  dftr4  5273  treq  5274  trv  5280  pwtr  5453  unisucg  6443  orduniss  6462  onuninsuci  7829  trcl  9723  tc2  9737  r1tr2  9772  tskuni  10778  untangtr  34683  hfuni  35156
  Copyright terms: Public domain W3C validator