MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-tr Structured version   Visualization version   GIF version

Definition df-tr 5210
Description: Define the transitive class predicate. Not to be confused with a transitive relation (see cotr 6071). Definition of [Enderton] p. 71 extended to arbitrary classes. For alternate definitions, see dftr2 5211 (which is suggestive of the word "transitive"), dftr2c 5212, dftr3 5215, dftr4 5216, dftr5 5213, and (when 𝐴 is a set) unisuc 6401. The term "complete" is used instead of "transitive" in Definition 3 of [Suppes] p. 130. (Contributed by NM, 29-Aug-1993.)
Assertion
Ref Expression
df-tr (Tr 𝐴 𝐴𝐴)

Detailed syntax breakdown of Definition df-tr
StepHypRef Expression
1 cA . . 3 class 𝐴
21wtr 5209 . 2 wff Tr 𝐴
31cuni 4867 . . 3 class 𝐴
43, 1wss 3911 . 2 wff 𝐴𝐴
52, 4wb 206 1 wff (Tr 𝐴 𝐴𝐴)
Colors of variables: wff setvar class
This definition is referenced by:  dftr2  5211  dftr4  5216  treq  5217  trv  5223  pwtr  5407  unisucg  6400  orduniss  6419  onuninsuci  7796  trcl  9657  tc2  9671  r1tr2  9706  tskuni  10712  untangtr  35694  hfuni  36165
  Copyright terms: Public domain W3C validator