| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-tr | Structured version Visualization version GIF version | ||
| Description: Define the transitive class predicate. Not to be confused with a transitive relation (see cotr 6071). Definition of [Enderton] p. 71 extended to arbitrary classes. For alternate definitions, see dftr2 5211 (which is suggestive of the word "transitive"), dftr2c 5212, dftr3 5215, dftr4 5216, dftr5 5213, and (when 𝐴 is a set) unisuc 6401. The term "complete" is used instead of "transitive" in Definition 3 of [Suppes] p. 130. (Contributed by NM, 29-Aug-1993.) |
| Ref | Expression |
|---|---|
| df-tr | ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | wtr 5209 | . 2 wff Tr 𝐴 |
| 3 | 1 | cuni 4867 | . . 3 class ∪ 𝐴 |
| 4 | 3, 1 | wss 3911 | . 2 wff ∪ 𝐴 ⊆ 𝐴 |
| 5 | 2, 4 | wb 206 | 1 wff (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dftr2 5211 dftr4 5216 treq 5217 trv 5223 pwtr 5407 unisucg 6400 orduniss 6419 onuninsuci 7796 trcl 9657 tc2 9671 r1tr2 9706 tskuni 10712 untangtr 35694 hfuni 36165 |
| Copyright terms: Public domain | W3C validator |