MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-tr Structured version   Visualization version   GIF version

Definition df-tr 5200
Description: Define the transitive class predicate. Not to be confused with a transitive relation (see cotr 6061). Definition of [Enderton] p. 71 extended to arbitrary classes. For alternate definitions, see dftr2 5201 (which is suggestive of the word "transitive"), dftr2c 5202, dftr3 5204, dftr4 5205, dftr5 5203, and (when 𝐴 is a set) unisuc 6388. The term "complete" is used instead of "transitive" in Definition 3 of [Suppes] p. 130. (Contributed by NM, 29-Aug-1993.)
Assertion
Ref Expression
df-tr (Tr 𝐴 𝐴𝐴)

Detailed syntax breakdown of Definition df-tr
StepHypRef Expression
1 cA . . 3 class 𝐴
21wtr 5199 . 2 wff Tr 𝐴
31cuni 4858 . . 3 class 𝐴
43, 1wss 3903 . 2 wff 𝐴𝐴
52, 4wb 206 1 wff (Tr 𝐴 𝐴𝐴)
Colors of variables: wff setvar class
This definition is referenced by:  dftr2  5201  dftr4  5205  treq  5206  trv  5212  pwtr  5395  unisucg  6387  orduniss  6406  onuninsuci  7773  trcl  9624  tc2  9638  r1tr2  9673  tskuni  10677  tz9.1regs  35073  untangtr  35697  hfuni  36168
  Copyright terms: Public domain W3C validator