MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-tr Structured version   Visualization version   GIF version

Definition df-tr 5265
Description: Define the transitive class predicate. Not to be confused with a transitive relation (see cotr 6132). Definition of [Enderton] p. 71 extended to arbitrary classes. For alternate definitions, see dftr2 5266 (which is suggestive of the word "transitive"), dftr2c 5267, dftr3 5270, dftr4 5271, dftr5 5268, and (when 𝐴 is a set) unisuc 6464. The term "complete" is used instead of "transitive" in Definition 3 of [Suppes] p. 130. (Contributed by NM, 29-Aug-1993.)
Assertion
Ref Expression
df-tr (Tr 𝐴 𝐴𝐴)

Detailed syntax breakdown of Definition df-tr
StepHypRef Expression
1 cA . . 3 class 𝐴
21wtr 5264 . 2 wff Tr 𝐴
31cuni 4911 . . 3 class 𝐴
43, 1wss 3962 . 2 wff 𝐴𝐴
52, 4wb 206 1 wff (Tr 𝐴 𝐴𝐴)
Colors of variables: wff setvar class
This definition is referenced by:  dftr2  5266  dftr4  5271  treq  5272  trv  5278  pwtr  5462  unisucg  6463  orduniss  6482  onuninsuci  7860  trcl  9765  tc2  9779  r1tr2  9814  tskuni  10820  untangtr  35693  hfuni  36165
  Copyright terms: Public domain W3C validator