Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-refs Structured version   Visualization version   GIF version

Definition df-refs 38501
Description: Define the class of all reflexive sets. It is used only by df-refrels 38502. We use subset relation S (df-ssr 38489) here to be able to define converse reflexivity (df-cnvrefs 38516), see also the comment of df-ssr 38489. The elements of this class are not necessarily relations (versus df-refrels 38502).

Note the similarity of Definitions df-refs 38501, df-syms 38533 and df-trs 38563, cf. comments of dfrefrels2 38504. (Contributed by Peter Mazsa, 19-Jul-2019.)

Assertion
Ref Expression
df-refs Refs = {𝑥 ∣ ( I ∩ (dom 𝑥 × ran 𝑥)) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))}

Detailed syntax breakdown of Definition df-refs
StepHypRef Expression
1 crefs 38173 . 2 class Refs
2 cid 5532 . . . . 5 class I
3 vx . . . . . . . 8 setvar 𝑥
43cv 1539 . . . . . . 7 class 𝑥
54cdm 5638 . . . . . 6 class dom 𝑥
64crn 5639 . . . . . 6 class ran 𝑥
75, 6cxp 5636 . . . . 5 class (dom 𝑥 × ran 𝑥)
82, 7cin 3913 . . . 4 class ( I ∩ (dom 𝑥 × ran 𝑥))
94, 7cin 3913 . . . 4 class (𝑥 ∩ (dom 𝑥 × ran 𝑥))
10 cssr 38172 . . . 4 class S
118, 9, 10wbr 5107 . . 3 wff ( I ∩ (dom 𝑥 × ran 𝑥)) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))
1211, 3cab 2707 . 2 class {𝑥 ∣ ( I ∩ (dom 𝑥 × ran 𝑥)) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))}
131, 12wceq 1540 1 wff Refs = {𝑥 ∣ ( I ∩ (dom 𝑥 × ran 𝑥)) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))}
Colors of variables: wff setvar class
This definition is referenced by:  dfrefrels2  38504
  Copyright terms: Public domain W3C validator