MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uc1pval Structured version   Visualization version   GIF version

Theorem uc1pval 24727
Description: Value of the set of unitic polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
uc1pval.p 𝑃 = (Poly1𝑅)
uc1pval.b 𝐵 = (Base‘𝑃)
uc1pval.z 0 = (0g𝑃)
uc1pval.d 𝐷 = ( deg1𝑅)
uc1pval.c 𝐶 = (Unic1p𝑅)
uc1pval.u 𝑈 = (Unit‘𝑅)
Assertion
Ref Expression
uc1pval 𝐶 = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)}
Distinct variable groups:   𝐵,𝑓   𝐷,𝑓   𝑅,𝑓   𝑈,𝑓   0 ,𝑓
Allowed substitution hints:   𝐶(𝑓)   𝑃(𝑓)

Proof of Theorem uc1pval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 uc1pval.c . 2 𝐶 = (Unic1p𝑅)
2 fveq2 6664 . . . . . . . 8 (𝑟 = 𝑅 → (Poly1𝑟) = (Poly1𝑅))
3 uc1pval.p . . . . . . . 8 𝑃 = (Poly1𝑅)
42, 3syl6eqr 2874 . . . . . . 7 (𝑟 = 𝑅 → (Poly1𝑟) = 𝑃)
54fveq2d 6668 . . . . . 6 (𝑟 = 𝑅 → (Base‘(Poly1𝑟)) = (Base‘𝑃))
6 uc1pval.b . . . . . 6 𝐵 = (Base‘𝑃)
75, 6syl6eqr 2874 . . . . 5 (𝑟 = 𝑅 → (Base‘(Poly1𝑟)) = 𝐵)
84fveq2d 6668 . . . . . . . 8 (𝑟 = 𝑅 → (0g‘(Poly1𝑟)) = (0g𝑃))
9 uc1pval.z . . . . . . . 8 0 = (0g𝑃)
108, 9syl6eqr 2874 . . . . . . 7 (𝑟 = 𝑅 → (0g‘(Poly1𝑟)) = 0 )
1110neeq2d 3076 . . . . . 6 (𝑟 = 𝑅 → (𝑓 ≠ (0g‘(Poly1𝑟)) ↔ 𝑓0 ))
12 fveq2 6664 . . . . . . . . . 10 (𝑟 = 𝑅 → ( deg1𝑟) = ( deg1𝑅))
13 uc1pval.d . . . . . . . . . 10 𝐷 = ( deg1𝑅)
1412, 13syl6eqr 2874 . . . . . . . . 9 (𝑟 = 𝑅 → ( deg1𝑟) = 𝐷)
1514fveq1d 6666 . . . . . . . 8 (𝑟 = 𝑅 → (( deg1𝑟)‘𝑓) = (𝐷𝑓))
1615fveq2d 6668 . . . . . . 7 (𝑟 = 𝑅 → ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) = ((coe1𝑓)‘(𝐷𝑓)))
17 fveq2 6664 . . . . . . . 8 (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅))
18 uc1pval.u . . . . . . . 8 𝑈 = (Unit‘𝑅)
1917, 18syl6eqr 2874 . . . . . . 7 (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈)
2016, 19eleq12d 2907 . . . . . 6 (𝑟 = 𝑅 → (((coe1𝑓)‘(( deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟) ↔ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈))
2111, 20anbi12d 632 . . . . 5 (𝑟 = 𝑅 → ((𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟)) ↔ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)))
227, 21rabeqbidv 3485 . . . 4 (𝑟 = 𝑅 → {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))} = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)})
23 df-uc1p 24719 . . . 4 Unic1p = (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))})
246fvexi 6678 . . . . 5 𝐵 ∈ V
2524rabex 5227 . . . 4 {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)} ∈ V
2622, 23, 25fvmpt 6762 . . 3 (𝑅 ∈ V → (Unic1p𝑅) = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)})
27 fvprc 6657 . . . 4 𝑅 ∈ V → (Unic1p𝑅) = ∅)
28 ssrab2 4055 . . . . . 6 {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)} ⊆ 𝐵
29 fvprc 6657 . . . . . . . . . 10 𝑅 ∈ V → (Poly1𝑅) = ∅)
303, 29syl5eq 2868 . . . . . . . . 9 𝑅 ∈ V → 𝑃 = ∅)
3130fveq2d 6668 . . . . . . . 8 𝑅 ∈ V → (Base‘𝑃) = (Base‘∅))
32 base0 16530 . . . . . . . 8 ∅ = (Base‘∅)
3331, 32syl6eqr 2874 . . . . . . 7 𝑅 ∈ V → (Base‘𝑃) = ∅)
346, 33syl5eq 2868 . . . . . 6 𝑅 ∈ V → 𝐵 = ∅)
3528, 34sseqtrid 4018 . . . . 5 𝑅 ∈ V → {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)} ⊆ ∅)
36 ss0 4351 . . . . 5 ({𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)} ⊆ ∅ → {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)} = ∅)
3735, 36syl 17 . . . 4 𝑅 ∈ V → {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)} = ∅)
3827, 37eqtr4d 2859 . . 3 𝑅 ∈ V → (Unic1p𝑅) = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)})
3926, 38pm2.61i 184 . 2 (Unic1p𝑅) = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)}
401, 39eqtri 2844 1 𝐶 = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 398   = wceq 1533  wcel 2110  wne 3016  {crab 3142  Vcvv 3494  wss 3935  c0 4290  cfv 6349  Basecbs 16477  0gc0g 16707  Unitcui 19383  Poly1cpl1 20339  coe1cco1 20340   deg1 cdg1 24642  Unic1pcuc1p 24714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-iota 6308  df-fun 6351  df-fv 6357  df-slot 16481  df-base 16483  df-uc1p 24719
This theorem is referenced by:  isuc1p  24728
  Copyright terms: Public domain W3C validator