MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uc1pval Structured version   Visualization version   GIF version

Theorem uc1pval 26102
Description: Value of the set of unitic polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
uc1pval.p 𝑃 = (Poly1𝑅)
uc1pval.b 𝐵 = (Base‘𝑃)
uc1pval.z 0 = (0g𝑃)
uc1pval.d 𝐷 = (deg1𝑅)
uc1pval.c 𝐶 = (Unic1p𝑅)
uc1pval.u 𝑈 = (Unit‘𝑅)
Assertion
Ref Expression
uc1pval 𝐶 = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)}
Distinct variable groups:   𝐵,𝑓   𝐷,𝑓   𝑅,𝑓   𝑈,𝑓   0 ,𝑓
Allowed substitution hints:   𝐶(𝑓)   𝑃(𝑓)

Proof of Theorem uc1pval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 uc1pval.c . 2 𝐶 = (Unic1p𝑅)
2 fveq2 6881 . . . . . . . 8 (𝑟 = 𝑅 → (Poly1𝑟) = (Poly1𝑅))
3 uc1pval.p . . . . . . . 8 𝑃 = (Poly1𝑅)
42, 3eqtr4di 2789 . . . . . . 7 (𝑟 = 𝑅 → (Poly1𝑟) = 𝑃)
54fveq2d 6885 . . . . . 6 (𝑟 = 𝑅 → (Base‘(Poly1𝑟)) = (Base‘𝑃))
6 uc1pval.b . . . . . 6 𝐵 = (Base‘𝑃)
75, 6eqtr4di 2789 . . . . 5 (𝑟 = 𝑅 → (Base‘(Poly1𝑟)) = 𝐵)
84fveq2d 6885 . . . . . . . 8 (𝑟 = 𝑅 → (0g‘(Poly1𝑟)) = (0g𝑃))
9 uc1pval.z . . . . . . . 8 0 = (0g𝑃)
108, 9eqtr4di 2789 . . . . . . 7 (𝑟 = 𝑅 → (0g‘(Poly1𝑟)) = 0 )
1110neeq2d 2993 . . . . . 6 (𝑟 = 𝑅 → (𝑓 ≠ (0g‘(Poly1𝑟)) ↔ 𝑓0 ))
12 fveq2 6881 . . . . . . . . . 10 (𝑟 = 𝑅 → (deg1𝑟) = (deg1𝑅))
13 uc1pval.d . . . . . . . . . 10 𝐷 = (deg1𝑅)
1412, 13eqtr4di 2789 . . . . . . . . 9 (𝑟 = 𝑅 → (deg1𝑟) = 𝐷)
1514fveq1d 6883 . . . . . . . 8 (𝑟 = 𝑅 → ((deg1𝑟)‘𝑓) = (𝐷𝑓))
1615fveq2d 6885 . . . . . . 7 (𝑟 = 𝑅 → ((coe1𝑓)‘((deg1𝑟)‘𝑓)) = ((coe1𝑓)‘(𝐷𝑓)))
17 fveq2 6881 . . . . . . . 8 (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅))
18 uc1pval.u . . . . . . . 8 𝑈 = (Unit‘𝑅)
1917, 18eqtr4di 2789 . . . . . . 7 (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈)
2016, 19eleq12d 2829 . . . . . 6 (𝑟 = 𝑅 → (((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟) ↔ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈))
2111, 20anbi12d 632 . . . . 5 (𝑟 = 𝑅 → ((𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟)) ↔ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)))
227, 21rabeqbidv 3439 . . . 4 (𝑟 = 𝑅 → {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))} = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)})
23 df-uc1p 26094 . . . 4 Unic1p = (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))})
246fvexi 6895 . . . . 5 𝐵 ∈ V
2524rabex 5314 . . . 4 {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)} ∈ V
2622, 23, 25fvmpt 6991 . . 3 (𝑅 ∈ V → (Unic1p𝑅) = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)})
27 fvprc 6873 . . . 4 𝑅 ∈ V → (Unic1p𝑅) = ∅)
28 ssrab2 4060 . . . . . 6 {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)} ⊆ 𝐵
29 fvprc 6873 . . . . . . . . . 10 𝑅 ∈ V → (Poly1𝑅) = ∅)
303, 29eqtrid 2783 . . . . . . . . 9 𝑅 ∈ V → 𝑃 = ∅)
3130fveq2d 6885 . . . . . . . 8 𝑅 ∈ V → (Base‘𝑃) = (Base‘∅))
32 base0 17238 . . . . . . . 8 ∅ = (Base‘∅)
3331, 32eqtr4di 2789 . . . . . . 7 𝑅 ∈ V → (Base‘𝑃) = ∅)
346, 33eqtrid 2783 . . . . . 6 𝑅 ∈ V → 𝐵 = ∅)
3528, 34sseqtrid 4006 . . . . 5 𝑅 ∈ V → {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)} ⊆ ∅)
36 ss0 4382 . . . . 5 ({𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)} ⊆ ∅ → {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)} = ∅)
3735, 36syl 17 . . . 4 𝑅 ∈ V → {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)} = ∅)
3827, 37eqtr4d 2774 . . 3 𝑅 ∈ V → (Unic1p𝑅) = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)})
3926, 38pm2.61i 182 . 2 (Unic1p𝑅) = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)}
401, 39eqtri 2759 1 𝐶 = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2109  wne 2933  {crab 3420  Vcvv 3464  wss 3931  c0 4313  cfv 6536  Basecbs 17233  0gc0g 17458  Unitcui 20320  Poly1cpl1 22117  coe1cco1 22118  deg1cdg1 26016  Unic1pcuc1p 26089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-1cn 11192  ax-addcl 11194
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-nn 12246  df-slot 17206  df-ndx 17218  df-base 17234  df-uc1p 26094
This theorem is referenced by:  isuc1p  26103
  Copyright terms: Public domain W3C validator