MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uc1pval Structured version   Visualization version   GIF version

Theorem uc1pval 25504
Description: Value of the set of unitic polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
uc1pval.p 𝑃 = (Poly1𝑅)
uc1pval.b 𝐵 = (Base‘𝑃)
uc1pval.z 0 = (0g𝑃)
uc1pval.d 𝐷 = ( deg1𝑅)
uc1pval.c 𝐶 = (Unic1p𝑅)
uc1pval.u 𝑈 = (Unit‘𝑅)
Assertion
Ref Expression
uc1pval 𝐶 = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)}
Distinct variable groups:   𝐵,𝑓   𝐷,𝑓   𝑅,𝑓   𝑈,𝑓   0 ,𝑓
Allowed substitution hints:   𝐶(𝑓)   𝑃(𝑓)

Proof of Theorem uc1pval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 uc1pval.c . 2 𝐶 = (Unic1p𝑅)
2 fveq2 6842 . . . . . . . 8 (𝑟 = 𝑅 → (Poly1𝑟) = (Poly1𝑅))
3 uc1pval.p . . . . . . . 8 𝑃 = (Poly1𝑅)
42, 3eqtr4di 2794 . . . . . . 7 (𝑟 = 𝑅 → (Poly1𝑟) = 𝑃)
54fveq2d 6846 . . . . . 6 (𝑟 = 𝑅 → (Base‘(Poly1𝑟)) = (Base‘𝑃))
6 uc1pval.b . . . . . 6 𝐵 = (Base‘𝑃)
75, 6eqtr4di 2794 . . . . 5 (𝑟 = 𝑅 → (Base‘(Poly1𝑟)) = 𝐵)
84fveq2d 6846 . . . . . . . 8 (𝑟 = 𝑅 → (0g‘(Poly1𝑟)) = (0g𝑃))
9 uc1pval.z . . . . . . . 8 0 = (0g𝑃)
108, 9eqtr4di 2794 . . . . . . 7 (𝑟 = 𝑅 → (0g‘(Poly1𝑟)) = 0 )
1110neeq2d 3004 . . . . . 6 (𝑟 = 𝑅 → (𝑓 ≠ (0g‘(Poly1𝑟)) ↔ 𝑓0 ))
12 fveq2 6842 . . . . . . . . . 10 (𝑟 = 𝑅 → ( deg1𝑟) = ( deg1𝑅))
13 uc1pval.d . . . . . . . . . 10 𝐷 = ( deg1𝑅)
1412, 13eqtr4di 2794 . . . . . . . . 9 (𝑟 = 𝑅 → ( deg1𝑟) = 𝐷)
1514fveq1d 6844 . . . . . . . 8 (𝑟 = 𝑅 → (( deg1𝑟)‘𝑓) = (𝐷𝑓))
1615fveq2d 6846 . . . . . . 7 (𝑟 = 𝑅 → ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) = ((coe1𝑓)‘(𝐷𝑓)))
17 fveq2 6842 . . . . . . . 8 (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅))
18 uc1pval.u . . . . . . . 8 𝑈 = (Unit‘𝑅)
1917, 18eqtr4di 2794 . . . . . . 7 (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈)
2016, 19eleq12d 2832 . . . . . 6 (𝑟 = 𝑅 → (((coe1𝑓)‘(( deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟) ↔ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈))
2111, 20anbi12d 631 . . . . 5 (𝑟 = 𝑅 → ((𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟)) ↔ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)))
227, 21rabeqbidv 3424 . . . 4 (𝑟 = 𝑅 → {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))} = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)})
23 df-uc1p 25496 . . . 4 Unic1p = (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))})
246fvexi 6856 . . . . 5 𝐵 ∈ V
2524rabex 5289 . . . 4 {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)} ∈ V
2622, 23, 25fvmpt 6948 . . 3 (𝑅 ∈ V → (Unic1p𝑅) = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)})
27 fvprc 6834 . . . 4 𝑅 ∈ V → (Unic1p𝑅) = ∅)
28 ssrab2 4037 . . . . . 6 {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)} ⊆ 𝐵
29 fvprc 6834 . . . . . . . . . 10 𝑅 ∈ V → (Poly1𝑅) = ∅)
303, 29eqtrid 2788 . . . . . . . . 9 𝑅 ∈ V → 𝑃 = ∅)
3130fveq2d 6846 . . . . . . . 8 𝑅 ∈ V → (Base‘𝑃) = (Base‘∅))
32 base0 17088 . . . . . . . 8 ∅ = (Base‘∅)
3331, 32eqtr4di 2794 . . . . . . 7 𝑅 ∈ V → (Base‘𝑃) = ∅)
346, 33eqtrid 2788 . . . . . 6 𝑅 ∈ V → 𝐵 = ∅)
3528, 34sseqtrid 3996 . . . . 5 𝑅 ∈ V → {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)} ⊆ ∅)
36 ss0 4358 . . . . 5 ({𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)} ⊆ ∅ → {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)} = ∅)
3735, 36syl 17 . . . 4 𝑅 ∈ V → {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)} = ∅)
3827, 37eqtr4d 2779 . . 3 𝑅 ∈ V → (Unic1p𝑅) = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)})
3926, 38pm2.61i 182 . 2 (Unic1p𝑅) = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)}
401, 39eqtri 2764 1 𝐶 = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396   = wceq 1541  wcel 2106  wne 2943  {crab 3407  Vcvv 3445  wss 3910  c0 4282  cfv 6496  Basecbs 17083  0gc0g 17321  Unitcui 20068  Poly1cpl1 21548  coe1cco1 21549   deg1 cdg1 25416  Unic1pcuc1p 25491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-1cn 11109  ax-addcl 11111
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-nn 12154  df-slot 17054  df-ndx 17066  df-base 17084  df-uc1p 25496
This theorem is referenced by:  isuc1p  25505
  Copyright terms: Public domain W3C validator