MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filssufil Structured version   Visualization version   GIF version

Theorem filssufil 23799
Description: A filter is contained in some ultrafilter. (Requires the Axiom of Choice, via numth3 10423.) (Contributed by Jeff Hankins, 2-Dec-2009.) (Revised by Stefan O'Rear, 29-Jul-2015.)
Assertion
Ref Expression
filssufil (𝐹 ∈ (Fil‘𝑋) → ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓)
Distinct variable groups:   𝑓,𝐹   𝑓,𝑋

Proof of Theorem filssufil
StepHypRef Expression
1 filtop 23742 . . 3 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
2 pwexg 5333 . . 3 (𝑋𝐹 → 𝒫 𝑋 ∈ V)
3 pwexg 5333 . . 3 (𝒫 𝑋 ∈ V → 𝒫 𝒫 𝑋 ∈ V)
4 numth3 10423 . . 3 (𝒫 𝒫 𝑋 ∈ V → 𝒫 𝒫 𝑋 ∈ dom card)
51, 2, 3, 44syl 19 . 2 (𝐹 ∈ (Fil‘𝑋) → 𝒫 𝒫 𝑋 ∈ dom card)
6 filssufilg 23798 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓)
75, 6mpdan 687 1 (𝐹 ∈ (Fil‘𝑋) → ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wrex 3053  Vcvv 3447  wss 3914  𝒫 cpw 4563  dom cdm 5638  cfv 6511  cardccrd 9888  Filcfil 23732  UFilcufil 23786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-ac2 10416
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-rpss 7699  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-fin 8922  df-fi 9362  df-dju 9854  df-card 9892  df-ac 10069  df-fbas 21261  df-fg 21262  df-fil 23733  df-ufil 23788
This theorem is referenced by:  ufileu  23806  filufint  23807  ufinffr  23816  ufilen  23817
  Copyright terms: Public domain W3C validator