Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isufl | Structured version Visualization version GIF version |
Description: Define the (strong) ultrafilter lemma, parameterized over base sets. A set 𝑋 satisfies the ultrafilter lemma if every filter on 𝑋 is a subset of some ultrafilter. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
isufl | ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑋)∃𝑔 ∈ (UFil‘𝑋)𝑓 ⊆ 𝑔)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6767 | . . 3 ⊢ (𝑥 = 𝑋 → (Fil‘𝑥) = (Fil‘𝑋)) | |
2 | fveq2 6767 | . . . 4 ⊢ (𝑥 = 𝑋 → (UFil‘𝑥) = (UFil‘𝑋)) | |
3 | 2 | rexeqdv 3347 | . . 3 ⊢ (𝑥 = 𝑋 → (∃𝑔 ∈ (UFil‘𝑥)𝑓 ⊆ 𝑔 ↔ ∃𝑔 ∈ (UFil‘𝑋)𝑓 ⊆ 𝑔)) |
4 | 1, 3 | raleqbidv 3334 | . 2 ⊢ (𝑥 = 𝑋 → (∀𝑓 ∈ (Fil‘𝑥)∃𝑔 ∈ (UFil‘𝑥)𝑓 ⊆ 𝑔 ↔ ∀𝑓 ∈ (Fil‘𝑋)∃𝑔 ∈ (UFil‘𝑋)𝑓 ⊆ 𝑔)) |
5 | df-ufl 23041 | . 2 ⊢ UFL = {𝑥 ∣ ∀𝑓 ∈ (Fil‘𝑥)∃𝑔 ∈ (UFil‘𝑥)𝑓 ⊆ 𝑔} | |
6 | 4, 5 | elab2g 3611 | 1 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑋)∃𝑔 ∈ (UFil‘𝑋)𝑓 ⊆ 𝑔)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ⊆ wss 3887 ‘cfv 6427 Filcfil 22984 UFilcufil 23038 UFLcufl 23039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3432 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5075 df-iota 6385 df-fv 6435 df-ufl 23041 |
This theorem is referenced by: ufli 23053 numufl 23054 ssufl 23057 ufldom 23101 |
Copyright terms: Public domain | W3C validator |