MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isufl Structured version   Visualization version   GIF version

Theorem isufl 23064
Description: Define the (strong) ultrafilter lemma, parameterized over base sets. A set 𝑋 satisfies the ultrafilter lemma if every filter on 𝑋 is a subset of some ultrafilter. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
isufl (𝑋𝑉 → (𝑋 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑋)∃𝑔 ∈ (UFil‘𝑋)𝑓𝑔))
Distinct variable group:   𝑓,𝑔,𝑋
Allowed substitution hints:   𝑉(𝑓,𝑔)

Proof of Theorem isufl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6774 . . 3 (𝑥 = 𝑋 → (Fil‘𝑥) = (Fil‘𝑋))
2 fveq2 6774 . . . 4 (𝑥 = 𝑋 → (UFil‘𝑥) = (UFil‘𝑋))
32rexeqdv 3349 . . 3 (𝑥 = 𝑋 → (∃𝑔 ∈ (UFil‘𝑥)𝑓𝑔 ↔ ∃𝑔 ∈ (UFil‘𝑋)𝑓𝑔))
41, 3raleqbidv 3336 . 2 (𝑥 = 𝑋 → (∀𝑓 ∈ (Fil‘𝑥)∃𝑔 ∈ (UFil‘𝑥)𝑓𝑔 ↔ ∀𝑓 ∈ (Fil‘𝑋)∃𝑔 ∈ (UFil‘𝑋)𝑓𝑔))
5 df-ufl 23053 . 2 UFL = {𝑥 ∣ ∀𝑓 ∈ (Fil‘𝑥)∃𝑔 ∈ (UFil‘𝑥)𝑓𝑔}
64, 5elab2g 3611 1 (𝑋𝑉 → (𝑋 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑋)∃𝑔 ∈ (UFil‘𝑋)𝑓𝑔))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  wral 3064  wrex 3065  wss 3887  cfv 6433  Filcfil 22996  UFilcufil 23050  UFLcufl 23051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ufl 23053
This theorem is referenced by:  ufli  23065  numufl  23066  ssufl  23069  ufldom  23113
  Copyright terms: Public domain W3C validator