![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isufl | Structured version Visualization version GIF version |
Description: Define the (strong) ultrafilter lemma, parameterized over base sets. A set 𝑋 satisfies the ultrafilter lemma if every filter on 𝑋 is a subset of some ultrafilter. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
isufl | ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑋)∃𝑔 ∈ (UFil‘𝑋)𝑓 ⊆ 𝑔)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6907 | . . 3 ⊢ (𝑥 = 𝑋 → (Fil‘𝑥) = (Fil‘𝑋)) | |
2 | fveq2 6907 | . . . 4 ⊢ (𝑥 = 𝑋 → (UFil‘𝑥) = (UFil‘𝑋)) | |
3 | 2 | rexeqdv 3325 | . . 3 ⊢ (𝑥 = 𝑋 → (∃𝑔 ∈ (UFil‘𝑥)𝑓 ⊆ 𝑔 ↔ ∃𝑔 ∈ (UFil‘𝑋)𝑓 ⊆ 𝑔)) |
4 | 1, 3 | raleqbidv 3344 | . 2 ⊢ (𝑥 = 𝑋 → (∀𝑓 ∈ (Fil‘𝑥)∃𝑔 ∈ (UFil‘𝑥)𝑓 ⊆ 𝑔 ↔ ∀𝑓 ∈ (Fil‘𝑋)∃𝑔 ∈ (UFil‘𝑋)𝑓 ⊆ 𝑔)) |
5 | df-ufl 23926 | . 2 ⊢ UFL = {𝑥 ∣ ∀𝑓 ∈ (Fil‘𝑥)∃𝑔 ∈ (UFil‘𝑥)𝑓 ⊆ 𝑔} | |
6 | 4, 5 | elab2g 3683 | 1 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑋)∃𝑔 ∈ (UFil‘𝑋)𝑓 ⊆ 𝑔)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 ⊆ wss 3963 ‘cfv 6563 Filcfil 23869 UFilcufil 23923 UFLcufl 23924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ufl 23926 |
This theorem is referenced by: ufli 23938 numufl 23939 ssufl 23942 ufldom 23986 |
Copyright terms: Public domain | W3C validator |