MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isufl Structured version   Visualization version   GIF version

Theorem isufl 23922
Description: Define the (strong) ultrafilter lemma, parameterized over base sets. A set 𝑋 satisfies the ultrafilter lemma if every filter on 𝑋 is a subset of some ultrafilter. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
isufl (𝑋𝑉 → (𝑋 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑋)∃𝑔 ∈ (UFil‘𝑋)𝑓𝑔))
Distinct variable group:   𝑓,𝑔,𝑋
Allowed substitution hints:   𝑉(𝑓,𝑔)

Proof of Theorem isufl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6905 . . 3 (𝑥 = 𝑋 → (Fil‘𝑥) = (Fil‘𝑋))
2 fveq2 6905 . . . 4 (𝑥 = 𝑋 → (UFil‘𝑥) = (UFil‘𝑋))
32rexeqdv 3326 . . 3 (𝑥 = 𝑋 → (∃𝑔 ∈ (UFil‘𝑥)𝑓𝑔 ↔ ∃𝑔 ∈ (UFil‘𝑋)𝑓𝑔))
41, 3raleqbidv 3345 . 2 (𝑥 = 𝑋 → (∀𝑓 ∈ (Fil‘𝑥)∃𝑔 ∈ (UFil‘𝑥)𝑓𝑔 ↔ ∀𝑓 ∈ (Fil‘𝑋)∃𝑔 ∈ (UFil‘𝑋)𝑓𝑔))
5 df-ufl 23911 . 2 UFL = {𝑥 ∣ ∀𝑓 ∈ (Fil‘𝑥)∃𝑔 ∈ (UFil‘𝑥)𝑓𝑔}
64, 5elab2g 3679 1 (𝑋𝑉 → (𝑋 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑋)∃𝑔 ∈ (UFil‘𝑋)𝑓𝑔))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  wcel 2107  wral 3060  wrex 3069  wss 3950  cfv 6560  Filcfil 23854  UFilcufil 23908  UFLcufl 23909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-iota 6513  df-fv 6568  df-ufl 23911
This theorem is referenced by:  ufli  23923  numufl  23924  ssufl  23927  ufldom  23971
  Copyright terms: Public domain W3C validator