MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isufl Structured version   Visualization version   GIF version

Theorem isufl 23828
Description: Define the (strong) ultrafilter lemma, parameterized over base sets. A set 𝑋 satisfies the ultrafilter lemma if every filter on 𝑋 is a subset of some ultrafilter. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
isufl (𝑋𝑉 → (𝑋 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑋)∃𝑔 ∈ (UFil‘𝑋)𝑓𝑔))
Distinct variable group:   𝑓,𝑔,𝑋
Allowed substitution hints:   𝑉(𝑓,𝑔)

Proof of Theorem isufl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . 3 (𝑥 = 𝑋 → (Fil‘𝑥) = (Fil‘𝑋))
2 fveq2 6822 . . . 4 (𝑥 = 𝑋 → (UFil‘𝑥) = (UFil‘𝑋))
32rexeqdv 3293 . . 3 (𝑥 = 𝑋 → (∃𝑔 ∈ (UFil‘𝑥)𝑓𝑔 ↔ ∃𝑔 ∈ (UFil‘𝑋)𝑓𝑔))
41, 3raleqbidv 3312 . 2 (𝑥 = 𝑋 → (∀𝑓 ∈ (Fil‘𝑥)∃𝑔 ∈ (UFil‘𝑥)𝑓𝑔 ↔ ∀𝑓 ∈ (Fil‘𝑋)∃𝑔 ∈ (UFil‘𝑋)𝑓𝑔))
5 df-ufl 23817 . 2 UFL = {𝑥 ∣ ∀𝑓 ∈ (Fil‘𝑥)∃𝑔 ∈ (UFil‘𝑥)𝑓𝑔}
64, 5elab2g 3631 1 (𝑋𝑉 → (𝑋 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑋)∃𝑔 ∈ (UFil‘𝑋)𝑓𝑔))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  wral 3047  wrex 3056  wss 3897  cfv 6481  Filcfil 23760  UFilcufil 23814  UFLcufl 23815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-ufl 23817
This theorem is referenced by:  ufli  23829  numufl  23830  ssufl  23833  ufldom  23877
  Copyright terms: Public domain W3C validator