| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isufl | Structured version Visualization version GIF version | ||
| Description: Define the (strong) ultrafilter lemma, parameterized over base sets. A set 𝑋 satisfies the ultrafilter lemma if every filter on 𝑋 is a subset of some ultrafilter. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| isufl | ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑋)∃𝑔 ∈ (UFil‘𝑋)𝑓 ⊆ 𝑔)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6861 | . . 3 ⊢ (𝑥 = 𝑋 → (Fil‘𝑥) = (Fil‘𝑋)) | |
| 2 | fveq2 6861 | . . . 4 ⊢ (𝑥 = 𝑋 → (UFil‘𝑥) = (UFil‘𝑋)) | |
| 3 | 2 | rexeqdv 3302 | . . 3 ⊢ (𝑥 = 𝑋 → (∃𝑔 ∈ (UFil‘𝑥)𝑓 ⊆ 𝑔 ↔ ∃𝑔 ∈ (UFil‘𝑋)𝑓 ⊆ 𝑔)) |
| 4 | 1, 3 | raleqbidv 3321 | . 2 ⊢ (𝑥 = 𝑋 → (∀𝑓 ∈ (Fil‘𝑥)∃𝑔 ∈ (UFil‘𝑥)𝑓 ⊆ 𝑔 ↔ ∀𝑓 ∈ (Fil‘𝑋)∃𝑔 ∈ (UFil‘𝑋)𝑓 ⊆ 𝑔)) |
| 5 | df-ufl 23796 | . 2 ⊢ UFL = {𝑥 ∣ ∀𝑓 ∈ (Fil‘𝑥)∃𝑔 ∈ (UFil‘𝑥)𝑓 ⊆ 𝑔} | |
| 6 | 4, 5 | elab2g 3650 | 1 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑋)∃𝑔 ∈ (UFil‘𝑋)𝑓 ⊆ 𝑔)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 ⊆ wss 3917 ‘cfv 6514 Filcfil 23739 UFilcufil 23793 UFLcufl 23794 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ufl 23796 |
| This theorem is referenced by: ufli 23808 numufl 23809 ssufl 23812 ufldom 23856 |
| Copyright terms: Public domain | W3C validator |