Detailed syntax breakdown of Definition df-ust
Step | Hyp | Ref
| Expression |
1 | | cust 23351 |
. 2
class
UnifOn |
2 | | vx |
. . 3
setvar 𝑥 |
3 | | cvv 3432 |
. . 3
class
V |
4 | | vu |
. . . . . . 7
setvar 𝑢 |
5 | 4 | cv 1538 |
. . . . . 6
class 𝑢 |
6 | 2 | cv 1538 |
. . . . . . . 8
class 𝑥 |
7 | 6, 6 | cxp 5587 |
. . . . . . 7
class (𝑥 × 𝑥) |
8 | 7 | cpw 4533 |
. . . . . 6
class 𝒫
(𝑥 × 𝑥) |
9 | 5, 8 | wss 3887 |
. . . . 5
wff 𝑢 ⊆ 𝒫 (𝑥 × 𝑥) |
10 | 7, 5 | wcel 2106 |
. . . . 5
wff (𝑥 × 𝑥) ∈ 𝑢 |
11 | | vv |
. . . . . . . . . . 11
setvar 𝑣 |
12 | 11 | cv 1538 |
. . . . . . . . . 10
class 𝑣 |
13 | | vw |
. . . . . . . . . . 11
setvar 𝑤 |
14 | 13 | cv 1538 |
. . . . . . . . . 10
class 𝑤 |
15 | 12, 14 | wss 3887 |
. . . . . . . . 9
wff 𝑣 ⊆ 𝑤 |
16 | 13, 4 | wel 2107 |
. . . . . . . . 9
wff 𝑤 ∈ 𝑢 |
17 | 15, 16 | wi 4 |
. . . . . . . 8
wff (𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) |
18 | 17, 13, 8 | wral 3064 |
. . . . . . 7
wff
∀𝑤 ∈
𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) |
19 | 12, 14 | cin 3886 |
. . . . . . . . 9
class (𝑣 ∩ 𝑤) |
20 | 19, 5 | wcel 2106 |
. . . . . . . 8
wff (𝑣 ∩ 𝑤) ∈ 𝑢 |
21 | 20, 13, 5 | wral 3064 |
. . . . . . 7
wff
∀𝑤 ∈
𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 |
22 | | cid 5488 |
. . . . . . . . . 10
class
I |
23 | 22, 6 | cres 5591 |
. . . . . . . . 9
class ( I
↾ 𝑥) |
24 | 23, 12 | wss 3887 |
. . . . . . . 8
wff ( I ↾
𝑥) ⊆ 𝑣 |
25 | 12 | ccnv 5588 |
. . . . . . . . 9
class ◡𝑣 |
26 | 25, 5 | wcel 2106 |
. . . . . . . 8
wff ◡𝑣 ∈ 𝑢 |
27 | 14, 14 | ccom 5593 |
. . . . . . . . . 10
class (𝑤 ∘ 𝑤) |
28 | 27, 12 | wss 3887 |
. . . . . . . . 9
wff (𝑤 ∘ 𝑤) ⊆ 𝑣 |
29 | 28, 13, 5 | wrex 3065 |
. . . . . . . 8
wff
∃𝑤 ∈
𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣 |
30 | 24, 26, 29 | w3a 1086 |
. . . . . . 7
wff (( I
↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣) |
31 | 18, 21, 30 | w3a 1086 |
. . . . . 6
wff
(∀𝑤 ∈
𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)) |
32 | 31, 11, 5 | wral 3064 |
. . . . 5
wff
∀𝑣 ∈
𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)) |
33 | 9, 10, 32 | w3a 1086 |
. . . 4
wff (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣))) |
34 | 33, 4 | cab 2715 |
. . 3
class {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))} |
35 | 2, 3, 34 | cmpt 5157 |
. 2
class (𝑥 ∈ V ↦ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))}) |
36 | 1, 35 | wceq 1539 |
1
wff UnifOn =
(𝑥 ∈ V ↦ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))}) |