MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustn0 Structured version   Visualization version   GIF version

Theorem ustn0 24108
Description: The empty set is not an uniform structure. (Contributed by Thierry Arnoux, 3-Dec-2017.)
Assertion
Ref Expression
ustn0 ¬ ∅ ∈ ran UnifOn

Proof of Theorem ustn0
Dummy variables 𝑣 𝑢 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 4301 . . . . 5 ¬ (𝑥 × 𝑥) ∈ ∅
2 0ex 5262 . . . . . 6 ∅ ∈ V
3 eleq2 2817 . . . . . 6 (𝑢 = ∅ → ((𝑥 × 𝑥) ∈ 𝑢 ↔ (𝑥 × 𝑥) ∈ ∅))
42, 3elab 3646 . . . . 5 (∅ ∈ {𝑢 ∣ (𝑥 × 𝑥) ∈ 𝑢} ↔ (𝑥 × 𝑥) ∈ ∅)
51, 4mtbir 323 . . . 4 ¬ ∅ ∈ {𝑢 ∣ (𝑥 × 𝑥) ∈ 𝑢}
6 vex 3451 . . . . . . 7 𝑥 ∈ V
7 velpw 4568 . . . . . . . . . 10 (𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥) ↔ 𝑢 ⊆ 𝒫 (𝑥 × 𝑥))
87abbii 2796 . . . . . . . . 9 {𝑢𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥)} = {𝑢𝑢 ⊆ 𝒫 (𝑥 × 𝑥)}
9 abid2 2865 . . . . . . . . . 10 {𝑢𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥)} = 𝒫 𝒫 (𝑥 × 𝑥)
106, 6xpex 7729 . . . . . . . . . . . 12 (𝑥 × 𝑥) ∈ V
1110pwex 5335 . . . . . . . . . . 11 𝒫 (𝑥 × 𝑥) ∈ V
1211pwex 5335 . . . . . . . . . 10 𝒫 𝒫 (𝑥 × 𝑥) ∈ V
139, 12eqeltri 2824 . . . . . . . . 9 {𝑢𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥)} ∈ V
148, 13eqeltrri 2825 . . . . . . . 8 {𝑢𝑢 ⊆ 𝒫 (𝑥 × 𝑥)} ∈ V
15 simp1 1136 . . . . . . . . 9 ((𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣))) → 𝑢 ⊆ 𝒫 (𝑥 × 𝑥))
1615ss2abi 4030 . . . . . . . 8 {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))} ⊆ {𝑢𝑢 ⊆ 𝒫 (𝑥 × 𝑥)}
1714, 16ssexi 5277 . . . . . . 7 {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))} ∈ V
18 df-ust 24088 . . . . . . . 8 UnifOn = (𝑥 ∈ V ↦ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))})
1918fvmpt2 6979 . . . . . . 7 ((𝑥 ∈ V ∧ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))} ∈ V) → (UnifOn‘𝑥) = {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))})
206, 17, 19mp2an 692 . . . . . 6 (UnifOn‘𝑥) = {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))}
21 simp2 1137 . . . . . . 7 ((𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣))) → (𝑥 × 𝑥) ∈ 𝑢)
2221ss2abi 4030 . . . . . 6 {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))} ⊆ {𝑢 ∣ (𝑥 × 𝑥) ∈ 𝑢}
2320, 22eqsstri 3993 . . . . 5 (UnifOn‘𝑥) ⊆ {𝑢 ∣ (𝑥 × 𝑥) ∈ 𝑢}
2423sseli 3942 . . . 4 (∅ ∈ (UnifOn‘𝑥) → ∅ ∈ {𝑢 ∣ (𝑥 × 𝑥) ∈ 𝑢})
255, 24mto 197 . . 3 ¬ ∅ ∈ (UnifOn‘𝑥)
2625nex 1800 . 2 ¬ ∃𝑥∅ ∈ (UnifOn‘𝑥)
2718funmpt2 6555 . . . 4 Fun UnifOn
28 elunirn 7225 . . . 4 (Fun UnifOn → (∅ ∈ ran UnifOn ↔ ∃𝑥 ∈ dom UnifOn∅ ∈ (UnifOn‘𝑥)))
2927, 28ax-mp 5 . . 3 (∅ ∈ ran UnifOn ↔ ∃𝑥 ∈ dom UnifOn∅ ∈ (UnifOn‘𝑥))
30 ustfn 24089 . . . . 5 UnifOn Fn V
31 fndm 6621 . . . . 5 (UnifOn Fn V → dom UnifOn = V)
3230, 31ax-mp 5 . . . 4 dom UnifOn = V
3332rexeqi 3298 . . 3 (∃𝑥 ∈ dom UnifOn∅ ∈ (UnifOn‘𝑥) ↔ ∃𝑥 ∈ V ∅ ∈ (UnifOn‘𝑥))
34 rexv 3475 . . 3 (∃𝑥 ∈ V ∅ ∈ (UnifOn‘𝑥) ↔ ∃𝑥∅ ∈ (UnifOn‘𝑥))
3529, 33, 343bitri 297 . 2 (∅ ∈ ran UnifOn ↔ ∃𝑥∅ ∈ (UnifOn‘𝑥))
3626, 35mtbir 323 1 ¬ ∅ ∈ ran UnifOn
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  wrex 3053  Vcvv 3447  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563   cuni 4871   I cid 5532   × cxp 5636  ccnv 5637  dom cdm 5638  ran crn 5639  cres 5640  ccom 5642  Fun wfun 6505   Fn wfn 6506  cfv 6511  UnifOncust 24087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519  df-ust 24088
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator