Step | Hyp | Ref
| Expression |
1 | | noel 4261 |
. . . . 5
⊢ ¬
(𝑥 × 𝑥) ∈
∅ |
2 | | 0ex 5226 |
. . . . . 6
⊢ ∅
∈ V |
3 | | eleq2 2827 |
. . . . . 6
⊢ (𝑢 = ∅ → ((𝑥 × 𝑥) ∈ 𝑢 ↔ (𝑥 × 𝑥) ∈ ∅)) |
4 | 2, 3 | elab 3602 |
. . . . 5
⊢ (∅
∈ {𝑢 ∣ (𝑥 × 𝑥) ∈ 𝑢} ↔ (𝑥 × 𝑥) ∈ ∅) |
5 | 1, 4 | mtbir 322 |
. . . 4
⊢ ¬
∅ ∈ {𝑢 ∣
(𝑥 × 𝑥) ∈ 𝑢} |
6 | | vex 3426 |
. . . . . . 7
⊢ 𝑥 ∈ V |
7 | | velpw 4535 |
. . . . . . . . . 10
⊢ (𝑢 ∈ 𝒫 𝒫
(𝑥 × 𝑥) ↔ 𝑢 ⊆ 𝒫 (𝑥 × 𝑥)) |
8 | 7 | abbii 2809 |
. . . . . . . . 9
⊢ {𝑢 ∣ 𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥)} = {𝑢 ∣ 𝑢 ⊆ 𝒫 (𝑥 × 𝑥)} |
9 | | abid2 2881 |
. . . . . . . . . 10
⊢ {𝑢 ∣ 𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥)} = 𝒫 𝒫 (𝑥 × 𝑥) |
10 | 6, 6 | xpex 7581 |
. . . . . . . . . . . 12
⊢ (𝑥 × 𝑥) ∈ V |
11 | 10 | pwex 5298 |
. . . . . . . . . . 11
⊢ 𝒫
(𝑥 × 𝑥) ∈ V |
12 | 11 | pwex 5298 |
. . . . . . . . . 10
⊢ 𝒫
𝒫 (𝑥 × 𝑥) ∈ V |
13 | 9, 12 | eqeltri 2835 |
. . . . . . . . 9
⊢ {𝑢 ∣ 𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥)} ∈ V |
14 | 8, 13 | eqeltrri 2836 |
. . . . . . . 8
⊢ {𝑢 ∣ 𝑢 ⊆ 𝒫 (𝑥 × 𝑥)} ∈ V |
15 | | simp1 1134 |
. . . . . . . . 9
⊢ ((𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣))) → 𝑢 ⊆ 𝒫 (𝑥 × 𝑥)) |
16 | 15 | ss2abi 3996 |
. . . . . . . 8
⊢ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))} ⊆ {𝑢 ∣ 𝑢 ⊆ 𝒫 (𝑥 × 𝑥)} |
17 | 14, 16 | ssexi 5241 |
. . . . . . 7
⊢ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))} ∈ V |
18 | | df-ust 23260 |
. . . . . . . 8
⊢ UnifOn =
(𝑥 ∈ V ↦ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))}) |
19 | 18 | fvmpt2 6868 |
. . . . . . 7
⊢ ((𝑥 ∈ V ∧ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))} ∈ V) → (UnifOn‘𝑥) = {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))}) |
20 | 6, 17, 19 | mp2an 688 |
. . . . . 6
⊢
(UnifOn‘𝑥) =
{𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))} |
21 | | simp2 1135 |
. . . . . . 7
⊢ ((𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣))) → (𝑥 × 𝑥) ∈ 𝑢) |
22 | 21 | ss2abi 3996 |
. . . . . 6
⊢ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))} ⊆ {𝑢 ∣ (𝑥 × 𝑥) ∈ 𝑢} |
23 | 20, 22 | eqsstri 3951 |
. . . . 5
⊢
(UnifOn‘𝑥)
⊆ {𝑢 ∣ (𝑥 × 𝑥) ∈ 𝑢} |
24 | 23 | sseli 3913 |
. . . 4
⊢ (∅
∈ (UnifOn‘𝑥)
→ ∅ ∈ {𝑢
∣ (𝑥 × 𝑥) ∈ 𝑢}) |
25 | 5, 24 | mto 196 |
. . 3
⊢ ¬
∅ ∈ (UnifOn‘𝑥) |
26 | 25 | nex 1804 |
. 2
⊢ ¬
∃𝑥∅ ∈
(UnifOn‘𝑥) |
27 | 18 | funmpt2 6457 |
. . . 4
⊢ Fun
UnifOn |
28 | | elunirn 7106 |
. . . 4
⊢ (Fun
UnifOn → (∅ ∈ ∪ ran UnifOn ↔
∃𝑥 ∈ dom
UnifOn∅ ∈ (UnifOn‘𝑥))) |
29 | 27, 28 | ax-mp 5 |
. . 3
⊢ (∅
∈ ∪ ran UnifOn ↔ ∃𝑥 ∈ dom UnifOn∅ ∈
(UnifOn‘𝑥)) |
30 | | ustfn 23261 |
. . . . 5
⊢ UnifOn Fn
V |
31 | | fndm 6520 |
. . . . 5
⊢ (UnifOn
Fn V → dom UnifOn = V) |
32 | 30, 31 | ax-mp 5 |
. . . 4
⊢ dom
UnifOn = V |
33 | 32 | rexeqi 3338 |
. . 3
⊢
(∃𝑥 ∈ dom
UnifOn∅ ∈ (UnifOn‘𝑥) ↔ ∃𝑥 ∈ V ∅ ∈ (UnifOn‘𝑥)) |
34 | | rexv 3447 |
. . 3
⊢
(∃𝑥 ∈ V
∅ ∈ (UnifOn‘𝑥) ↔ ∃𝑥∅ ∈ (UnifOn‘𝑥)) |
35 | 29, 33, 34 | 3bitri 296 |
. 2
⊢ (∅
∈ ∪ ran UnifOn ↔ ∃𝑥∅ ∈ (UnifOn‘𝑥)) |
36 | 26, 35 | mtbir 322 |
1
⊢ ¬
∅ ∈ ∪ ran UnifOn |