MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustn0 Structured version   Visualization version   GIF version

Theorem ustn0 24230
Description: The empty set is not an uniform structure. (Contributed by Thierry Arnoux, 3-Dec-2017.)
Assertion
Ref Expression
ustn0 ¬ ∅ ∈ ran UnifOn

Proof of Theorem ustn0
Dummy variables 𝑣 𝑢 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 4337 . . . . 5 ¬ (𝑥 × 𝑥) ∈ ∅
2 0ex 5306 . . . . . 6 ∅ ∈ V
3 eleq2 2829 . . . . . 6 (𝑢 = ∅ → ((𝑥 × 𝑥) ∈ 𝑢 ↔ (𝑥 × 𝑥) ∈ ∅))
42, 3elab 3678 . . . . 5 (∅ ∈ {𝑢 ∣ (𝑥 × 𝑥) ∈ 𝑢} ↔ (𝑥 × 𝑥) ∈ ∅)
51, 4mtbir 323 . . . 4 ¬ ∅ ∈ {𝑢 ∣ (𝑥 × 𝑥) ∈ 𝑢}
6 vex 3483 . . . . . . 7 𝑥 ∈ V
7 velpw 4604 . . . . . . . . . 10 (𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥) ↔ 𝑢 ⊆ 𝒫 (𝑥 × 𝑥))
87abbii 2808 . . . . . . . . 9 {𝑢𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥)} = {𝑢𝑢 ⊆ 𝒫 (𝑥 × 𝑥)}
9 abid2 2878 . . . . . . . . . 10 {𝑢𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥)} = 𝒫 𝒫 (𝑥 × 𝑥)
106, 6xpex 7774 . . . . . . . . . . . 12 (𝑥 × 𝑥) ∈ V
1110pwex 5379 . . . . . . . . . . 11 𝒫 (𝑥 × 𝑥) ∈ V
1211pwex 5379 . . . . . . . . . 10 𝒫 𝒫 (𝑥 × 𝑥) ∈ V
139, 12eqeltri 2836 . . . . . . . . 9 {𝑢𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥)} ∈ V
148, 13eqeltrri 2837 . . . . . . . 8 {𝑢𝑢 ⊆ 𝒫 (𝑥 × 𝑥)} ∈ V
15 simp1 1136 . . . . . . . . 9 ((𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣))) → 𝑢 ⊆ 𝒫 (𝑥 × 𝑥))
1615ss2abi 4066 . . . . . . . 8 {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))} ⊆ {𝑢𝑢 ⊆ 𝒫 (𝑥 × 𝑥)}
1714, 16ssexi 5321 . . . . . . 7 {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))} ∈ V
18 df-ust 24210 . . . . . . . 8 UnifOn = (𝑥 ∈ V ↦ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))})
1918fvmpt2 7026 . . . . . . 7 ((𝑥 ∈ V ∧ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))} ∈ V) → (UnifOn‘𝑥) = {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))})
206, 17, 19mp2an 692 . . . . . 6 (UnifOn‘𝑥) = {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))}
21 simp2 1137 . . . . . . 7 ((𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣))) → (𝑥 × 𝑥) ∈ 𝑢)
2221ss2abi 4066 . . . . . 6 {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))} ⊆ {𝑢 ∣ (𝑥 × 𝑥) ∈ 𝑢}
2320, 22eqsstri 4029 . . . . 5 (UnifOn‘𝑥) ⊆ {𝑢 ∣ (𝑥 × 𝑥) ∈ 𝑢}
2423sseli 3978 . . . 4 (∅ ∈ (UnifOn‘𝑥) → ∅ ∈ {𝑢 ∣ (𝑥 × 𝑥) ∈ 𝑢})
255, 24mto 197 . . 3 ¬ ∅ ∈ (UnifOn‘𝑥)
2625nex 1799 . 2 ¬ ∃𝑥∅ ∈ (UnifOn‘𝑥)
2718funmpt2 6604 . . . 4 Fun UnifOn
28 elunirn 7272 . . . 4 (Fun UnifOn → (∅ ∈ ran UnifOn ↔ ∃𝑥 ∈ dom UnifOn∅ ∈ (UnifOn‘𝑥)))
2927, 28ax-mp 5 . . 3 (∅ ∈ ran UnifOn ↔ ∃𝑥 ∈ dom UnifOn∅ ∈ (UnifOn‘𝑥))
30 ustfn 24211 . . . . 5 UnifOn Fn V
31 fndm 6670 . . . . 5 (UnifOn Fn V → dom UnifOn = V)
3230, 31ax-mp 5 . . . 4 dom UnifOn = V
3332rexeqi 3324 . . 3 (∃𝑥 ∈ dom UnifOn∅ ∈ (UnifOn‘𝑥) ↔ ∃𝑥 ∈ V ∅ ∈ (UnifOn‘𝑥))
34 rexv 3508 . . 3 (∃𝑥 ∈ V ∅ ∈ (UnifOn‘𝑥) ↔ ∃𝑥∅ ∈ (UnifOn‘𝑥))
3529, 33, 343bitri 297 . 2 (∅ ∈ ran UnifOn ↔ ∃𝑥∅ ∈ (UnifOn‘𝑥))
3626, 35mtbir 323 1 ¬ ∅ ∈ ran UnifOn
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  w3a 1086   = wceq 1539  wex 1778  wcel 2107  {cab 2713  wral 3060  wrex 3069  Vcvv 3479  cin 3949  wss 3950  c0 4332  𝒫 cpw 4599   cuni 4906   I cid 5576   × cxp 5682  ccnv 5683  dom cdm 5684  ran crn 5685  cres 5686  ccom 5688  Fun wfun 6554   Fn wfn 6555  cfv 6560  UnifOncust 24209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-fv 6568  df-ust 24210
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator