MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustn0 Structured version   Visualization version   GIF version

Theorem ustn0 23072
Description: The empty set is not an uniform structure. (Contributed by Thierry Arnoux, 3-Dec-2017.)
Assertion
Ref Expression
ustn0 ¬ ∅ ∈ ran UnifOn

Proof of Theorem ustn0
Dummy variables 𝑣 𝑢 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 4231 . . . . 5 ¬ (𝑥 × 𝑥) ∈ ∅
2 0ex 5185 . . . . . 6 ∅ ∈ V
3 eleq2 2819 . . . . . 6 (𝑢 = ∅ → ((𝑥 × 𝑥) ∈ 𝑢 ↔ (𝑥 × 𝑥) ∈ ∅))
42, 3elab 3576 . . . . 5 (∅ ∈ {𝑢 ∣ (𝑥 × 𝑥) ∈ 𝑢} ↔ (𝑥 × 𝑥) ∈ ∅)
51, 4mtbir 326 . . . 4 ¬ ∅ ∈ {𝑢 ∣ (𝑥 × 𝑥) ∈ 𝑢}
6 vex 3402 . . . . . . 7 𝑥 ∈ V
7 velpw 4504 . . . . . . . . . 10 (𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥) ↔ 𝑢 ⊆ 𝒫 (𝑥 × 𝑥))
87abbii 2801 . . . . . . . . 9 {𝑢𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥)} = {𝑢𝑢 ⊆ 𝒫 (𝑥 × 𝑥)}
9 abid2 2872 . . . . . . . . . 10 {𝑢𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥)} = 𝒫 𝒫 (𝑥 × 𝑥)
106, 6xpex 7516 . . . . . . . . . . . 12 (𝑥 × 𝑥) ∈ V
1110pwex 5258 . . . . . . . . . . 11 𝒫 (𝑥 × 𝑥) ∈ V
1211pwex 5258 . . . . . . . . . 10 𝒫 𝒫 (𝑥 × 𝑥) ∈ V
139, 12eqeltri 2827 . . . . . . . . 9 {𝑢𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥)} ∈ V
148, 13eqeltrri 2828 . . . . . . . 8 {𝑢𝑢 ⊆ 𝒫 (𝑥 × 𝑥)} ∈ V
15 simp1 1138 . . . . . . . . 9 ((𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣))) → 𝑢 ⊆ 𝒫 (𝑥 × 𝑥))
1615ss2abi 3966 . . . . . . . 8 {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))} ⊆ {𝑢𝑢 ⊆ 𝒫 (𝑥 × 𝑥)}
1714, 16ssexi 5200 . . . . . . 7 {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))} ∈ V
18 df-ust 23052 . . . . . . . 8 UnifOn = (𝑥 ∈ V ↦ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))})
1918fvmpt2 6807 . . . . . . 7 ((𝑥 ∈ V ∧ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))} ∈ V) → (UnifOn‘𝑥) = {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))})
206, 17, 19mp2an 692 . . . . . 6 (UnifOn‘𝑥) = {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))}
21 simp2 1139 . . . . . . 7 ((𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣))) → (𝑥 × 𝑥) ∈ 𝑢)
2221ss2abi 3966 . . . . . 6 {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))} ⊆ {𝑢 ∣ (𝑥 × 𝑥) ∈ 𝑢}
2320, 22eqsstri 3921 . . . . 5 (UnifOn‘𝑥) ⊆ {𝑢 ∣ (𝑥 × 𝑥) ∈ 𝑢}
2423sseli 3883 . . . 4 (∅ ∈ (UnifOn‘𝑥) → ∅ ∈ {𝑢 ∣ (𝑥 × 𝑥) ∈ 𝑢})
255, 24mto 200 . . 3 ¬ ∅ ∈ (UnifOn‘𝑥)
2625nex 1808 . 2 ¬ ∃𝑥∅ ∈ (UnifOn‘𝑥)
2718funmpt2 6397 . . . 4 Fun UnifOn
28 elunirn 7042 . . . 4 (Fun UnifOn → (∅ ∈ ran UnifOn ↔ ∃𝑥 ∈ dom UnifOn∅ ∈ (UnifOn‘𝑥)))
2927, 28ax-mp 5 . . 3 (∅ ∈ ran UnifOn ↔ ∃𝑥 ∈ dom UnifOn∅ ∈ (UnifOn‘𝑥))
30 ustfn 23053 . . . . 5 UnifOn Fn V
31 fndm 6459 . . . . 5 (UnifOn Fn V → dom UnifOn = V)
3230, 31ax-mp 5 . . . 4 dom UnifOn = V
3332rexeqi 3314 . . 3 (∃𝑥 ∈ dom UnifOn∅ ∈ (UnifOn‘𝑥) ↔ ∃𝑥 ∈ V ∅ ∈ (UnifOn‘𝑥))
34 rexv 3423 . . 3 (∃𝑥 ∈ V ∅ ∈ (UnifOn‘𝑥) ↔ ∃𝑥∅ ∈ (UnifOn‘𝑥))
3529, 33, 343bitri 300 . 2 (∅ ∈ ran UnifOn ↔ ∃𝑥∅ ∈ (UnifOn‘𝑥))
3626, 35mtbir 326 1 ¬ ∅ ∈ ran UnifOn
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  w3a 1089   = wceq 1543  wex 1787  wcel 2112  {cab 2714  wral 3051  wrex 3052  Vcvv 3398  cin 3852  wss 3853  c0 4223  𝒫 cpw 4499   cuni 4805   I cid 5439   × cxp 5534  ccnv 5535  dom cdm 5536  ran crn 5537  cres 5538  ccom 5540  Fun wfun 6352   Fn wfn 6353  cfv 6358  UnifOncust 23051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-fv 6366  df-ust 23052
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator