| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ustfn | Structured version Visualization version GIF version | ||
| Description: The defined uniform structure as a function. (Contributed by Thierry Arnoux, 15-Nov-2017.) |
| Ref | Expression |
|---|---|
| ustfn | ⊢ UnifOn Fn V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velpw 4552 | . . . . 5 ⊢ (𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥) ↔ 𝑢 ⊆ 𝒫 (𝑥 × 𝑥)) | |
| 2 | 1 | abbii 2798 | . . . 4 ⊢ {𝑢 ∣ 𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥)} = {𝑢 ∣ 𝑢 ⊆ 𝒫 (𝑥 × 𝑥)} |
| 3 | abid2 2868 | . . . . 5 ⊢ {𝑢 ∣ 𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥)} = 𝒫 𝒫 (𝑥 × 𝑥) | |
| 4 | vex 3440 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 5 | 4, 4 | xpex 7686 | . . . . . . 7 ⊢ (𝑥 × 𝑥) ∈ V |
| 6 | 5 | pwex 5316 | . . . . . 6 ⊢ 𝒫 (𝑥 × 𝑥) ∈ V |
| 7 | 6 | pwex 5316 | . . . . 5 ⊢ 𝒫 𝒫 (𝑥 × 𝑥) ∈ V |
| 8 | 3, 7 | eqeltri 2827 | . . . 4 ⊢ {𝑢 ∣ 𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥)} ∈ V |
| 9 | 2, 8 | eqeltrri 2828 | . . 3 ⊢ {𝑢 ∣ 𝑢 ⊆ 𝒫 (𝑥 × 𝑥)} ∈ V |
| 10 | simp1 1136 | . . . 4 ⊢ ((𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣))) → 𝑢 ⊆ 𝒫 (𝑥 × 𝑥)) | |
| 11 | 10 | ss2abi 4013 | . . 3 ⊢ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))} ⊆ {𝑢 ∣ 𝑢 ⊆ 𝒫 (𝑥 × 𝑥)} |
| 12 | 9, 11 | ssexi 5258 | . 2 ⊢ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))} ∈ V |
| 13 | df-ust 24116 | . 2 ⊢ UnifOn = (𝑥 ∈ V ↦ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))}) | |
| 14 | 12, 13 | fnmpti 6624 | 1 ⊢ UnifOn Fn V |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2111 {cab 2709 ∀wral 3047 ∃wrex 3056 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 𝒫 cpw 4547 I cid 5508 × cxp 5612 ◡ccnv 5613 ↾ cres 5616 ∘ ccom 5618 Fn wfn 6476 UnifOncust 24115 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-fun 6483 df-fn 6484 df-ust 24116 |
| This theorem is referenced by: ustn0 24136 ustbas 24142 |
| Copyright terms: Public domain | W3C validator |