MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustfn Structured version   Visualization version   GIF version

Theorem ustfn 23053
Description: The defined uniform structure as a function. (Contributed by Thierry Arnoux, 15-Nov-2017.)
Assertion
Ref Expression
ustfn UnifOn Fn V

Proof of Theorem ustfn
Dummy variables 𝑣 𝑢 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 velpw 4504 . . . . 5 (𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥) ↔ 𝑢 ⊆ 𝒫 (𝑥 × 𝑥))
21abbii 2801 . . . 4 {𝑢𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥)} = {𝑢𝑢 ⊆ 𝒫 (𝑥 × 𝑥)}
3 abid2 2872 . . . . 5 {𝑢𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥)} = 𝒫 𝒫 (𝑥 × 𝑥)
4 vex 3402 . . . . . . . 8 𝑥 ∈ V
54, 4xpex 7516 . . . . . . 7 (𝑥 × 𝑥) ∈ V
65pwex 5258 . . . . . 6 𝒫 (𝑥 × 𝑥) ∈ V
76pwex 5258 . . . . 5 𝒫 𝒫 (𝑥 × 𝑥) ∈ V
83, 7eqeltri 2827 . . . 4 {𝑢𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥)} ∈ V
92, 8eqeltrri 2828 . . 3 {𝑢𝑢 ⊆ 𝒫 (𝑥 × 𝑥)} ∈ V
10 simp1 1138 . . . 4 ((𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣))) → 𝑢 ⊆ 𝒫 (𝑥 × 𝑥))
1110ss2abi 3966 . . 3 {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))} ⊆ {𝑢𝑢 ⊆ 𝒫 (𝑥 × 𝑥)}
129, 11ssexi 5200 . 2 {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))} ∈ V
13 df-ust 23052 . 2 UnifOn = (𝑥 ∈ V ↦ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))})
1412, 13fnmpti 6499 1 UnifOn Fn V
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1089  wcel 2112  {cab 2714  wral 3051  wrex 3052  Vcvv 3398  cin 3852  wss 3853  𝒫 cpw 4499   I cid 5439   × cxp 5534  ccnv 5535  cres 5538  ccom 5540   Fn wfn 6353  UnifOncust 23051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-fun 6360  df-fn 6361  df-ust 23052
This theorem is referenced by:  ustn0  23072  elrnust  23076  ustbas  23079
  Copyright terms: Public domain W3C validator