|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ustfn | Structured version Visualization version GIF version | ||
| Description: The defined uniform structure as a function. (Contributed by Thierry Arnoux, 15-Nov-2017.) | 
| Ref | Expression | 
|---|---|
| ustfn | ⊢ UnifOn Fn V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | velpw 4604 | . . . . 5 ⊢ (𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥) ↔ 𝑢 ⊆ 𝒫 (𝑥 × 𝑥)) | |
| 2 | 1 | abbii 2808 | . . . 4 ⊢ {𝑢 ∣ 𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥)} = {𝑢 ∣ 𝑢 ⊆ 𝒫 (𝑥 × 𝑥)} | 
| 3 | abid2 2878 | . . . . 5 ⊢ {𝑢 ∣ 𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥)} = 𝒫 𝒫 (𝑥 × 𝑥) | |
| 4 | vex 3483 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 5 | 4, 4 | xpex 7774 | . . . . . . 7 ⊢ (𝑥 × 𝑥) ∈ V | 
| 6 | 5 | pwex 5379 | . . . . . 6 ⊢ 𝒫 (𝑥 × 𝑥) ∈ V | 
| 7 | 6 | pwex 5379 | . . . . 5 ⊢ 𝒫 𝒫 (𝑥 × 𝑥) ∈ V | 
| 8 | 3, 7 | eqeltri 2836 | . . . 4 ⊢ {𝑢 ∣ 𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥)} ∈ V | 
| 9 | 2, 8 | eqeltrri 2837 | . . 3 ⊢ {𝑢 ∣ 𝑢 ⊆ 𝒫 (𝑥 × 𝑥)} ∈ V | 
| 10 | simp1 1136 | . . . 4 ⊢ ((𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣))) → 𝑢 ⊆ 𝒫 (𝑥 × 𝑥)) | |
| 11 | 10 | ss2abi 4066 | . . 3 ⊢ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))} ⊆ {𝑢 ∣ 𝑢 ⊆ 𝒫 (𝑥 × 𝑥)} | 
| 12 | 9, 11 | ssexi 5321 | . 2 ⊢ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))} ∈ V | 
| 13 | df-ust 24210 | . 2 ⊢ UnifOn = (𝑥 ∈ V ↦ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))}) | |
| 14 | 12, 13 | fnmpti 6710 | 1 ⊢ UnifOn Fn V | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2107 {cab 2713 ∀wral 3060 ∃wrex 3069 Vcvv 3479 ∩ cin 3949 ⊆ wss 3950 𝒫 cpw 4599 I cid 5576 × cxp 5682 ◡ccnv 5683 ↾ cres 5686 ∘ ccom 5688 Fn wfn 6555 UnifOncust 24209 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-fun 6562 df-fn 6563 df-ust 24210 | 
| This theorem is referenced by: ustn0 24230 ustbas 24237 | 
| Copyright terms: Public domain | W3C validator |