Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ustfn | Structured version Visualization version GIF version |
Description: The defined uniform structure as a function. (Contributed by Thierry Arnoux, 15-Nov-2017.) |
Ref | Expression |
---|---|
ustfn | ⊢ UnifOn Fn V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velpw 4538 | . . . . 5 ⊢ (𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥) ↔ 𝑢 ⊆ 𝒫 (𝑥 × 𝑥)) | |
2 | 1 | abbii 2808 | . . . 4 ⊢ {𝑢 ∣ 𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥)} = {𝑢 ∣ 𝑢 ⊆ 𝒫 (𝑥 × 𝑥)} |
3 | abid2 2882 | . . . . 5 ⊢ {𝑢 ∣ 𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥)} = 𝒫 𝒫 (𝑥 × 𝑥) | |
4 | vex 3436 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
5 | 4, 4 | xpex 7603 | . . . . . . 7 ⊢ (𝑥 × 𝑥) ∈ V |
6 | 5 | pwex 5303 | . . . . . 6 ⊢ 𝒫 (𝑥 × 𝑥) ∈ V |
7 | 6 | pwex 5303 | . . . . 5 ⊢ 𝒫 𝒫 (𝑥 × 𝑥) ∈ V |
8 | 3, 7 | eqeltri 2835 | . . . 4 ⊢ {𝑢 ∣ 𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥)} ∈ V |
9 | 2, 8 | eqeltrri 2836 | . . 3 ⊢ {𝑢 ∣ 𝑢 ⊆ 𝒫 (𝑥 × 𝑥)} ∈ V |
10 | simp1 1135 | . . . 4 ⊢ ((𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣))) → 𝑢 ⊆ 𝒫 (𝑥 × 𝑥)) | |
11 | 10 | ss2abi 4000 | . . 3 ⊢ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))} ⊆ {𝑢 ∣ 𝑢 ⊆ 𝒫 (𝑥 × 𝑥)} |
12 | 9, 11 | ssexi 5246 | . 2 ⊢ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))} ∈ V |
13 | df-ust 23352 | . 2 ⊢ UnifOn = (𝑥 ∈ V ↦ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))}) | |
14 | 12, 13 | fnmpti 6576 | 1 ⊢ UnifOn Fn V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2106 {cab 2715 ∀wral 3064 ∃wrex 3065 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 𝒫 cpw 4533 I cid 5488 × cxp 5587 ◡ccnv 5588 ↾ cres 5591 ∘ ccom 5593 Fn wfn 6428 UnifOncust 23351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-fun 6435 df-fn 6436 df-ust 23352 |
This theorem is referenced by: ustn0 23372 elrnust 23376 ustbas 23379 |
Copyright terms: Public domain | W3C validator |