MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustfn Structured version   Visualization version   GIF version

Theorem ustfn 22212
Description: The defined uniform structure as a function. (Contributed by Thierry Arnoux, 15-Nov-2017.)
Assertion
Ref Expression
ustfn UnifOn Fn V

Proof of Theorem ustfn
Dummy variables 𝑣 𝑢 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 selpw 4352 . . . . 5 (𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥) ↔ 𝑢 ⊆ 𝒫 (𝑥 × 𝑥))
21abbii 2919 . . . 4 {𝑢𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥)} = {𝑢𝑢 ⊆ 𝒫 (𝑥 × 𝑥)}
3 abid2 2925 . . . . 5 {𝑢𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥)} = 𝒫 𝒫 (𝑥 × 𝑥)
4 vex 3390 . . . . . . . 8 𝑥 ∈ V
54, 4xpex 7186 . . . . . . 7 (𝑥 × 𝑥) ∈ V
65pwex 5044 . . . . . 6 𝒫 (𝑥 × 𝑥) ∈ V
76pwex 5044 . . . . 5 𝒫 𝒫 (𝑥 × 𝑥) ∈ V
83, 7eqeltri 2877 . . . 4 {𝑢𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥)} ∈ V
92, 8eqeltrri 2878 . . 3 {𝑢𝑢 ⊆ 𝒫 (𝑥 × 𝑥)} ∈ V
10 simp1 1159 . . . 4 ((𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣))) → 𝑢 ⊆ 𝒫 (𝑥 × 𝑥))
1110ss2abi 3865 . . 3 {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))} ⊆ {𝑢𝑢 ⊆ 𝒫 (𝑥 × 𝑥)}
129, 11ssexi 4992 . 2 {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))} ∈ V
13 df-ust 22211 . 2 UnifOn = (𝑥 ∈ V ↦ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))})
1412, 13fnmpti 6227 1 UnifOn Fn V
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1100  wcel 2155  {cab 2788  wral 3092  wrex 3093  Vcvv 3387  cin 3762  wss 3763  𝒫 cpw 4345   I cid 5212   × cxp 5303  ccnv 5304  cres 5307  ccom 5309   Fn wfn 6090  UnifOncust 22210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2067  ax-7 2103  ax-8 2157  ax-9 2164  ax-10 2184  ax-11 2200  ax-12 2213  ax-13 2419  ax-ext 2781  ax-sep 4968  ax-nul 4977  ax-pow 5029  ax-pr 5090  ax-un 7173
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2060  df-eu 2633  df-mo 2634  df-clab 2789  df-cleq 2795  df-clel 2798  df-nfc 2933  df-ral 3097  df-rex 3098  df-rab 3101  df-v 3389  df-dif 3766  df-un 3768  df-in 3770  df-ss 3777  df-nul 4111  df-if 4274  df-pw 4347  df-sn 4365  df-pr 4367  df-op 4371  df-uni 4624  df-br 4838  df-opab 4900  df-mpt 4917  df-id 5213  df-xp 5311  df-rel 5312  df-cnv 5313  df-co 5314  df-dm 5315  df-fun 6097  df-fn 6098  df-ust 22211
This theorem is referenced by:  ustn0  22231  elrnust  22235  ustbas  22238
  Copyright terms: Public domain W3C validator