| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ustfn | Structured version Visualization version GIF version | ||
| Description: The defined uniform structure as a function. (Contributed by Thierry Arnoux, 15-Nov-2017.) |
| Ref | Expression |
|---|---|
| ustfn | ⊢ UnifOn Fn V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velpw 4558 | . . . . 5 ⊢ (𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥) ↔ 𝑢 ⊆ 𝒫 (𝑥 × 𝑥)) | |
| 2 | 1 | abbii 2796 | . . . 4 ⊢ {𝑢 ∣ 𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥)} = {𝑢 ∣ 𝑢 ⊆ 𝒫 (𝑥 × 𝑥)} |
| 3 | abid2 2865 | . . . . 5 ⊢ {𝑢 ∣ 𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥)} = 𝒫 𝒫 (𝑥 × 𝑥) | |
| 4 | vex 3442 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 5 | 4, 4 | xpex 7693 | . . . . . . 7 ⊢ (𝑥 × 𝑥) ∈ V |
| 6 | 5 | pwex 5322 | . . . . . 6 ⊢ 𝒫 (𝑥 × 𝑥) ∈ V |
| 7 | 6 | pwex 5322 | . . . . 5 ⊢ 𝒫 𝒫 (𝑥 × 𝑥) ∈ V |
| 8 | 3, 7 | eqeltri 2824 | . . . 4 ⊢ {𝑢 ∣ 𝑢 ∈ 𝒫 𝒫 (𝑥 × 𝑥)} ∈ V |
| 9 | 2, 8 | eqeltrri 2825 | . . 3 ⊢ {𝑢 ∣ 𝑢 ⊆ 𝒫 (𝑥 × 𝑥)} ∈ V |
| 10 | simp1 1136 | . . . 4 ⊢ ((𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣))) → 𝑢 ⊆ 𝒫 (𝑥 × 𝑥)) | |
| 11 | 10 | ss2abi 4021 | . . 3 ⊢ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))} ⊆ {𝑢 ∣ 𝑢 ⊆ 𝒫 (𝑥 × 𝑥)} |
| 12 | 9, 11 | ssexi 5264 | . 2 ⊢ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))} ∈ V |
| 13 | df-ust 24105 | . 2 ⊢ UnifOn = (𝑥 ∈ V ↦ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))}) | |
| 14 | 12, 13 | fnmpti 6629 | 1 ⊢ UnifOn Fn V |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∃wrex 3053 Vcvv 3438 ∩ cin 3904 ⊆ wss 3905 𝒫 cpw 4553 I cid 5517 × cxp 5621 ◡ccnv 5622 ↾ cres 5625 ∘ ccom 5627 Fn wfn 6481 UnifOncust 24104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-fun 6488 df-fn 6489 df-ust 24105 |
| This theorem is referenced by: ustn0 24125 ustbas 24132 |
| Copyright terms: Public domain | W3C validator |