Step | Hyp | Ref
| Expression |
1 | | df-ust 23260 |
. 2
⊢ UnifOn =
(𝑥 ∈ V ↦ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))}) |
2 | | id 22 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) |
3 | 2 | sqxpeqd 5612 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝑥 × 𝑥) = (𝑋 × 𝑋)) |
4 | 3 | pweqd 4549 |
. . . . 5
⊢ (𝑥 = 𝑋 → 𝒫 (𝑥 × 𝑥) = 𝒫 (𝑋 × 𝑋)) |
5 | 4 | sseq2d 3949 |
. . . 4
⊢ (𝑥 = 𝑋 → (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ↔ 𝑢 ⊆ 𝒫 (𝑋 × 𝑋))) |
6 | 3 | eleq1d 2823 |
. . . 4
⊢ (𝑥 = 𝑋 → ((𝑥 × 𝑥) ∈ 𝑢 ↔ (𝑋 × 𝑋) ∈ 𝑢)) |
7 | 4 | raleqdv 3339 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ↔ ∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢))) |
8 | | reseq2 5875 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ( I ↾ 𝑥) = ( I ↾ 𝑋)) |
9 | 8 | sseq1d 3948 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (( I ↾ 𝑥) ⊆ 𝑣 ↔ ( I ↾ 𝑋) ⊆ 𝑣)) |
10 | 9 | 3anbi1d 1438 |
. . . . . 6
⊢ (𝑥 = 𝑋 → ((( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣) ↔ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣))) |
11 | 7, 10 | 3anbi13d 1436 |
. . . . 5
⊢ (𝑥 = 𝑋 → ((∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)) ↔ (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))) |
12 | 11 | ralbidv 3120 |
. . . 4
⊢ (𝑥 = 𝑋 → (∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)) ↔ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))) |
13 | 5, 6, 12 | 3anbi123d 1434 |
. . 3
⊢ (𝑥 = 𝑋 → ((𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣))) ↔ (𝑢 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣))))) |
14 | 13 | abbidv 2808 |
. 2
⊢ (𝑥 = 𝑋 → {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))} = {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))}) |
15 | | elex 3440 |
. 2
⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) |
16 | | simp1 1134 |
. . . . 5
⊢ ((𝑢 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣))) → 𝑢 ⊆ 𝒫 (𝑋 × 𝑋)) |
17 | 16 | ss2abi 3996 |
. . . 4
⊢ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))} ⊆ {𝑢 ∣ 𝑢 ⊆ 𝒫 (𝑋 × 𝑋)} |
18 | | df-pw 4532 |
. . . 4
⊢ 𝒫
𝒫 (𝑋 × 𝑋) = {𝑢 ∣ 𝑢 ⊆ 𝒫 (𝑋 × 𝑋)} |
19 | 17, 18 | sseqtrri 3954 |
. . 3
⊢ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))} ⊆ 𝒫 𝒫 (𝑋 × 𝑋) |
20 | | sqxpexg 7583 |
. . . 4
⊢ (𝑋 ∈ 𝑉 → (𝑋 × 𝑋) ∈ V) |
21 | | pwexg 5296 |
. . . 4
⊢ ((𝑋 × 𝑋) ∈ V → 𝒫 (𝑋 × 𝑋) ∈ V) |
22 | | pwexg 5296 |
. . . 4
⊢
(𝒫 (𝑋
× 𝑋) ∈ V →
𝒫 𝒫 (𝑋
× 𝑋) ∈
V) |
23 | 20, 21, 22 | 3syl 18 |
. . 3
⊢ (𝑋 ∈ 𝑉 → 𝒫 𝒫 (𝑋 × 𝑋) ∈ V) |
24 | | ssexg 5242 |
. . 3
⊢ (({𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))} ⊆ 𝒫 𝒫 (𝑋 × 𝑋) ∧ 𝒫 𝒫 (𝑋 × 𝑋) ∈ V) → {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))} ∈ V) |
25 | 19, 23, 24 | sylancr 586 |
. 2
⊢ (𝑋 ∈ 𝑉 → {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))} ∈ V) |
26 | 1, 14, 15, 25 | fvmptd3 6880 |
1
⊢ (𝑋 ∈ 𝑉 → (UnifOn‘𝑋) = {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))}) |