MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustval Structured version   Visualization version   GIF version

Theorem ustval 24090
Description: The class of all uniform structures for a base 𝑋. (Contributed by Thierry Arnoux, 15-Nov-2017.) (Revised by AV, 17-Sep-2021.)
Assertion
Ref Expression
ustval (𝑋𝑉 → (UnifOn‘𝑋) = {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))})
Distinct variable group:   𝑣,𝑢,𝑤,𝑋
Allowed substitution hints:   𝑉(𝑤,𝑣,𝑢)

Proof of Theorem ustval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-ust 24088 . 2 UnifOn = (𝑥 ∈ V ↦ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))})
2 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
32sqxpeqd 5670 . . . . . 6 (𝑥 = 𝑋 → (𝑥 × 𝑥) = (𝑋 × 𝑋))
43pweqd 4580 . . . . 5 (𝑥 = 𝑋 → 𝒫 (𝑥 × 𝑥) = 𝒫 (𝑋 × 𝑋))
54sseq2d 3979 . . . 4 (𝑥 = 𝑋 → (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ↔ 𝑢 ⊆ 𝒫 (𝑋 × 𝑋)))
63eleq1d 2813 . . . 4 (𝑥 = 𝑋 → ((𝑥 × 𝑥) ∈ 𝑢 ↔ (𝑋 × 𝑋) ∈ 𝑢))
74raleqdv 3299 . . . . . 6 (𝑥 = 𝑋 → (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ↔ ∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑢)))
8 reseq2 5945 . . . . . . . 8 (𝑥 = 𝑋 → ( I ↾ 𝑥) = ( I ↾ 𝑋))
98sseq1d 3978 . . . . . . 7 (𝑥 = 𝑋 → (( I ↾ 𝑥) ⊆ 𝑣 ↔ ( I ↾ 𝑋) ⊆ 𝑣))
1093anbi1d 1442 . . . . . 6 (𝑥 = 𝑋 → ((( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣) ↔ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))
117, 103anbi13d 1440 . . . . 5 (𝑥 = 𝑋 → ((∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)) ↔ (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣))))
1211ralbidv 3156 . . . 4 (𝑥 = 𝑋 → (∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)) ↔ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣))))
135, 6, 123anbi123d 1438 . . 3 (𝑥 = 𝑋 → ((𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣))) ↔ (𝑢 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))))
1413abbidv 2795 . 2 (𝑥 = 𝑋 → {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))} = {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))})
15 elex 3468 . 2 (𝑋𝑉𝑋 ∈ V)
16 simp1 1136 . . . . 5 ((𝑢 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣))) → 𝑢 ⊆ 𝒫 (𝑋 × 𝑋))
1716ss2abi 4030 . . . 4 {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))} ⊆ {𝑢𝑢 ⊆ 𝒫 (𝑋 × 𝑋)}
18 df-pw 4565 . . . 4 𝒫 𝒫 (𝑋 × 𝑋) = {𝑢𝑢 ⊆ 𝒫 (𝑋 × 𝑋)}
1917, 18sseqtrri 3996 . . 3 {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))} ⊆ 𝒫 𝒫 (𝑋 × 𝑋)
20 sqxpexg 7731 . . . 4 (𝑋𝑉 → (𝑋 × 𝑋) ∈ V)
21 pwexg 5333 . . . 4 ((𝑋 × 𝑋) ∈ V → 𝒫 (𝑋 × 𝑋) ∈ V)
22 pwexg 5333 . . . 4 (𝒫 (𝑋 × 𝑋) ∈ V → 𝒫 𝒫 (𝑋 × 𝑋) ∈ V)
2320, 21, 223syl 18 . . 3 (𝑋𝑉 → 𝒫 𝒫 (𝑋 × 𝑋) ∈ V)
24 ssexg 5278 . . 3 (({𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))} ⊆ 𝒫 𝒫 (𝑋 × 𝑋) ∧ 𝒫 𝒫 (𝑋 × 𝑋) ∈ V) → {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))} ∈ V)
2519, 23, 24sylancr 587 . 2 (𝑋𝑉 → {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))} ∈ V)
261, 14, 15, 25fvmptd3 6991 1 (𝑋𝑉 → (UnifOn‘𝑋) = {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  Vcvv 3447  cin 3913  wss 3914  𝒫 cpw 4563   I cid 5532   × cxp 5636  ccnv 5637  cres 5640  ccom 5642  cfv 6511  UnifOncust 24087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-res 5650  df-iota 6464  df-fun 6513  df-fv 6519  df-ust 24088
This theorem is referenced by:  isust  24091
  Copyright terms: Public domain W3C validator