Detailed syntax breakdown of Definition df-vc
| Step | Hyp | Ref
| Expression |
| 1 | | cvc 30577 |
. 2
class
CVecOLD |
| 2 | | vg |
. . . . . 6
setvar 𝑔 |
| 3 | 2 | cv 1539 |
. . . . 5
class 𝑔 |
| 4 | | cablo 30563 |
. . . . 5
class
AbelOp |
| 5 | 3, 4 | wcel 2108 |
. . . 4
wff 𝑔 ∈ AbelOp |
| 6 | | cc 11153 |
. . . . . 6
class
ℂ |
| 7 | 3 | crn 5686 |
. . . . . 6
class ran 𝑔 |
| 8 | 6, 7 | cxp 5683 |
. . . . 5
class (ℂ
× ran 𝑔) |
| 9 | | vs |
. . . . . 6
setvar 𝑠 |
| 10 | 9 | cv 1539 |
. . . . 5
class 𝑠 |
| 11 | 8, 7, 10 | wf 6557 |
. . . 4
wff 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 |
| 12 | | c1 11156 |
. . . . . . . 8
class
1 |
| 13 | | vx |
. . . . . . . . 9
setvar 𝑥 |
| 14 | 13 | cv 1539 |
. . . . . . . 8
class 𝑥 |
| 15 | 12, 14, 10 | co 7431 |
. . . . . . 7
class (1𝑠𝑥) |
| 16 | 15, 14 | wceq 1540 |
. . . . . 6
wff (1𝑠𝑥) = 𝑥 |
| 17 | | vy |
. . . . . . . . . . . 12
setvar 𝑦 |
| 18 | 17 | cv 1539 |
. . . . . . . . . . 11
class 𝑦 |
| 19 | | vz |
. . . . . . . . . . . . 13
setvar 𝑧 |
| 20 | 19 | cv 1539 |
. . . . . . . . . . . 12
class 𝑧 |
| 21 | 14, 20, 3 | co 7431 |
. . . . . . . . . . 11
class (𝑥𝑔𝑧) |
| 22 | 18, 21, 10 | co 7431 |
. . . . . . . . . 10
class (𝑦𝑠(𝑥𝑔𝑧)) |
| 23 | 18, 14, 10 | co 7431 |
. . . . . . . . . . 11
class (𝑦𝑠𝑥) |
| 24 | 18, 20, 10 | co 7431 |
. . . . . . . . . . 11
class (𝑦𝑠𝑧) |
| 25 | 23, 24, 3 | co 7431 |
. . . . . . . . . 10
class ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) |
| 26 | 22, 25 | wceq 1540 |
. . . . . . . . 9
wff (𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) |
| 27 | 26, 19, 7 | wral 3061 |
. . . . . . . 8
wff
∀𝑧 ∈ ran
𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) |
| 28 | | caddc 11158 |
. . . . . . . . . . . . 13
class
+ |
| 29 | 18, 20, 28 | co 7431 |
. . . . . . . . . . . 12
class (𝑦 + 𝑧) |
| 30 | 29, 14, 10 | co 7431 |
. . . . . . . . . . 11
class ((𝑦 + 𝑧)𝑠𝑥) |
| 31 | 20, 14, 10 | co 7431 |
. . . . . . . . . . . 12
class (𝑧𝑠𝑥) |
| 32 | 23, 31, 3 | co 7431 |
. . . . . . . . . . 11
class ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) |
| 33 | 30, 32 | wceq 1540 |
. . . . . . . . . 10
wff ((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) |
| 34 | | cmul 11160 |
. . . . . . . . . . . . 13
class
· |
| 35 | 18, 20, 34 | co 7431 |
. . . . . . . . . . . 12
class (𝑦 · 𝑧) |
| 36 | 35, 14, 10 | co 7431 |
. . . . . . . . . . 11
class ((𝑦 · 𝑧)𝑠𝑥) |
| 37 | 18, 31, 10 | co 7431 |
. . . . . . . . . . 11
class (𝑦𝑠(𝑧𝑠𝑥)) |
| 38 | 36, 37 | wceq 1540 |
. . . . . . . . . 10
wff ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)) |
| 39 | 33, 38 | wa 395 |
. . . . . . . . 9
wff (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))) |
| 40 | 39, 19, 6 | wral 3061 |
. . . . . . . 8
wff
∀𝑧 ∈
ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))) |
| 41 | 27, 40 | wa 395 |
. . . . . . 7
wff
(∀𝑧 ∈
ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))) |
| 42 | 41, 17, 6 | wral 3061 |
. . . . . 6
wff
∀𝑦 ∈
ℂ (∀𝑧 ∈
ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))) |
| 43 | 16, 42 | wa 395 |
. . . . 5
wff ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))) |
| 44 | 43, 13, 7 | wral 3061 |
. . . 4
wff
∀𝑥 ∈ ran
𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))) |
| 45 | 5, 11, 44 | w3a 1087 |
. . 3
wff (𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))) |
| 46 | 45, 2, 9 | copab 5205 |
. 2
class
{〈𝑔, 𝑠〉 ∣ (𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))} |
| 47 | 1, 46 | wceq 1540 |
1
wff
CVecOLD = {〈𝑔, 𝑠〉 ∣ (𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))} |