| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vcrel | Structured version Visualization version GIF version | ||
| Description: The class of all complex vector spaces is a relation. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| vcrel | ⊢ Rel CVecOLD |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-vc 30545 | . 2 ⊢ CVecOLD = {〈𝑔, 𝑠〉 ∣ (𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))} | |
| 2 | 1 | relopabiv 5804 | 1 ⊢ Rel CVecOLD |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 × cxp 5657 ran crn 5660 Rel wrel 5664 ⟶wf 6532 (class class class)co 7410 ℂcc 11132 1c1 11135 + caddc 11137 · cmul 11139 AbelOpcablo 30530 CVecOLDcvc 30544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-ss 3948 df-opab 5187 df-xp 5665 df-rel 5666 df-vc 30545 |
| This theorem is referenced by: vcex 30564 nvvop 30595 phop 30804 |
| Copyright terms: Public domain | W3C validator |