| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vcrel | Structured version Visualization version GIF version | ||
| Description: The class of all complex vector spaces is a relation. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| vcrel | ⊢ Rel CVecOLD |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-vc 30534 | . 2 ⊢ CVecOLD = {〈𝑔, 𝑠〉 ∣ (𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))} | |
| 2 | 1 | relopabiv 5760 | 1 ⊢ Rel CVecOLD |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 × cxp 5614 ran crn 5617 Rel wrel 5621 ⟶wf 6477 (class class class)co 7346 ℂcc 11001 1c1 11004 + caddc 11006 · cmul 11008 AbelOpcablo 30519 CVecOLDcvc 30533 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3919 df-opab 5154 df-xp 5622 df-rel 5623 df-vc 30534 |
| This theorem is referenced by: vcex 30553 nvvop 30584 phop 30793 |
| Copyright terms: Public domain | W3C validator |