![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vcrel | Structured version Visualization version GIF version |
Description: The class of all complex vector spaces is a relation. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
vcrel | ⊢ Rel CVecOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-vc 30591 | . 2 ⊢ CVecOLD = {〈𝑔, 𝑠〉 ∣ (𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))} | |
2 | 1 | relopabiv 5844 | 1 ⊢ Rel CVecOLD |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 × cxp 5698 ran crn 5701 Rel wrel 5705 ⟶wf 6569 (class class class)co 7448 ℂcc 11182 1c1 11185 + caddc 11187 · cmul 11189 AbelOpcablo 30576 CVecOLDcvc 30590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-opab 5229 df-xp 5706 df-rel 5707 df-vc 30591 |
This theorem is referenced by: vcex 30610 nvvop 30641 phop 30850 |
Copyright terms: Public domain | W3C validator |