Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vcrel | Structured version Visualization version GIF version |
Description: The class of all complex vector spaces is a relation. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
vcrel | ⊢ Rel CVecOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-vc 29150 | . 2 ⊢ CVecOLD = {〈𝑔, 𝑠〉 ∣ (𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))} | |
2 | 1 | relopabiv 5756 | 1 ⊢ Rel CVecOLD |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3061 × cxp 5612 ran crn 5615 Rel wrel 5619 ⟶wf 6469 (class class class)co 7329 ℂcc 10962 1c1 10965 + caddc 10967 · cmul 10969 AbelOpcablo 29135 CVecOLDcvc 29149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-in 3904 df-ss 3914 df-opab 5152 df-xp 5620 df-rel 5621 df-vc 29150 |
This theorem is referenced by: vcex 29169 nvvop 29200 phop 29409 |
Copyright terms: Public domain | W3C validator |