![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vcrel | Structured version Visualization version GIF version |
Description: The class of all complex vector spaces is a relation. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
vcrel | ⊢ Rel CVecOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-vc 28128 | . 2 ⊢ CVecOLD = {〈𝑔, 𝑠〉 ∣ (𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))} | |
2 | 1 | relopabi 5540 | 1 ⊢ Rel CVecOLD |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 387 ∧ w3a 1069 = wceq 1508 ∈ wcel 2051 ∀wral 3081 × cxp 5401 ran crn 5404 Rel wrel 5408 ⟶wf 6181 (class class class)co 6974 ℂcc 10331 1c1 10334 + caddc 10336 · cmul 10338 AbelOpcablo 28113 CVecOLDcvc 28127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2743 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-rab 3090 df-v 3410 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-opab 4988 df-xp 5409 df-rel 5410 df-vc 28128 |
This theorem is referenced by: vcex 28147 nvvop 28178 phop 28387 |
Copyright terms: Public domain | W3C validator |