MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vciOLD Structured version   Visualization version   GIF version

Theorem vciOLD 29801
Description: Obsolete version of cvsi 24637. The properties of a complex vector space, which is an Abelian group (i.e. the vectors, with the operation of vector addition) accompanied by a scalar multiplication operation on the field of complex numbers. The variable π‘Š was chosen because V is already used for the universal class. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
vciOLD.1 𝐺 = (1st β€˜π‘Š)
vciOLD.2 𝑆 = (2nd β€˜π‘Š)
vciOLD.3 𝑋 = ran 𝐺
Assertion
Ref Expression
vciOLD (π‘Š ∈ CVecOLD β†’ (𝐺 ∈ AbelOp ∧ 𝑆:(β„‚ Γ— 𝑋)βŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 ((1𝑆π‘₯) = π‘₯ ∧ βˆ€π‘¦ ∈ β„‚ (βˆ€π‘§ ∈ 𝑋 (𝑦𝑆(π‘₯𝐺𝑧)) = ((𝑦𝑆π‘₯)𝐺(𝑦𝑆𝑧)) ∧ βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑆π‘₯) = ((𝑦𝑆π‘₯)𝐺(𝑧𝑆π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑆π‘₯) = (𝑦𝑆(𝑧𝑆π‘₯)))))))
Distinct variable groups:   π‘₯,𝑦,𝑧,𝐺   π‘₯,𝑆,𝑦,𝑧   π‘₯,𝑋,𝑦,𝑧
Allowed substitution hints:   π‘Š(π‘₯,𝑦,𝑧)

Proof of Theorem vciOLD
Dummy variables 𝑔 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vciOLD.1 . . . . 5 𝐺 = (1st β€˜π‘Š)
21eqeq2i 2745 . . . 4 (𝑔 = 𝐺 ↔ 𝑔 = (1st β€˜π‘Š))
3 eleq1 2821 . . . . 5 (𝑔 = 𝐺 β†’ (𝑔 ∈ AbelOp ↔ 𝐺 ∈ AbelOp))
4 rneq 5933 . . . . . . 7 (𝑔 = 𝐺 β†’ ran 𝑔 = ran 𝐺)
5 vciOLD.3 . . . . . . 7 𝑋 = ran 𝐺
64, 5eqtr4di 2790 . . . . . 6 (𝑔 = 𝐺 β†’ ran 𝑔 = 𝑋)
7 xpeq2 5696 . . . . . . . 8 (ran 𝑔 = 𝑋 β†’ (β„‚ Γ— ran 𝑔) = (β„‚ Γ— 𝑋))
87feq2d 6700 . . . . . . 7 (ran 𝑔 = 𝑋 β†’ (𝑠:(β„‚ Γ— ran 𝑔)⟢ran 𝑔 ↔ 𝑠:(β„‚ Γ— 𝑋)⟢ran 𝑔))
9 feq3 6697 . . . . . . 7 (ran 𝑔 = 𝑋 β†’ (𝑠:(β„‚ Γ— 𝑋)⟢ran 𝑔 ↔ 𝑠:(β„‚ Γ— 𝑋)βŸΆπ‘‹))
108, 9bitrd 278 . . . . . 6 (ran 𝑔 = 𝑋 β†’ (𝑠:(β„‚ Γ— ran 𝑔)⟢ran 𝑔 ↔ 𝑠:(β„‚ Γ— 𝑋)βŸΆπ‘‹))
116, 10syl 17 . . . . 5 (𝑔 = 𝐺 β†’ (𝑠:(β„‚ Γ— ran 𝑔)⟢ran 𝑔 ↔ 𝑠:(β„‚ Γ— 𝑋)βŸΆπ‘‹))
12 oveq 7411 . . . . . . . . . . . 12 (𝑔 = 𝐺 β†’ (π‘₯𝑔𝑧) = (π‘₯𝐺𝑧))
1312oveq2d 7421 . . . . . . . . . . 11 (𝑔 = 𝐺 β†’ (𝑦𝑠(π‘₯𝑔𝑧)) = (𝑦𝑠(π‘₯𝐺𝑧)))
14 oveq 7411 . . . . . . . . . . 11 (𝑔 = 𝐺 β†’ ((𝑦𝑠π‘₯)𝑔(𝑦𝑠𝑧)) = ((𝑦𝑠π‘₯)𝐺(𝑦𝑠𝑧)))
1513, 14eqeq12d 2748 . . . . . . . . . 10 (𝑔 = 𝐺 β†’ ((𝑦𝑠(π‘₯𝑔𝑧)) = ((𝑦𝑠π‘₯)𝑔(𝑦𝑠𝑧)) ↔ (𝑦𝑠(π‘₯𝐺𝑧)) = ((𝑦𝑠π‘₯)𝐺(𝑦𝑠𝑧))))
166, 15raleqbidv 3342 . . . . . . . . 9 (𝑔 = 𝐺 β†’ (βˆ€π‘§ ∈ ran 𝑔(𝑦𝑠(π‘₯𝑔𝑧)) = ((𝑦𝑠π‘₯)𝑔(𝑦𝑠𝑧)) ↔ βˆ€π‘§ ∈ 𝑋 (𝑦𝑠(π‘₯𝐺𝑧)) = ((𝑦𝑠π‘₯)𝐺(𝑦𝑠𝑧))))
17 oveq 7411 . . . . . . . . . . . 12 (𝑔 = 𝐺 β†’ ((𝑦𝑠π‘₯)𝑔(𝑧𝑠π‘₯)) = ((𝑦𝑠π‘₯)𝐺(𝑧𝑠π‘₯)))
1817eqeq2d 2743 . . . . . . . . . . 11 (𝑔 = 𝐺 β†’ (((𝑦 + 𝑧)𝑠π‘₯) = ((𝑦𝑠π‘₯)𝑔(𝑧𝑠π‘₯)) ↔ ((𝑦 + 𝑧)𝑠π‘₯) = ((𝑦𝑠π‘₯)𝐺(𝑧𝑠π‘₯))))
1918anbi1d 630 . . . . . . . . . 10 (𝑔 = 𝐺 β†’ ((((𝑦 + 𝑧)𝑠π‘₯) = ((𝑦𝑠π‘₯)𝑔(𝑧𝑠π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑠π‘₯) = (𝑦𝑠(𝑧𝑠π‘₯))) ↔ (((𝑦 + 𝑧)𝑠π‘₯) = ((𝑦𝑠π‘₯)𝐺(𝑧𝑠π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑠π‘₯) = (𝑦𝑠(𝑧𝑠π‘₯)))))
2019ralbidv 3177 . . . . . . . . 9 (𝑔 = 𝐺 β†’ (βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑠π‘₯) = ((𝑦𝑠π‘₯)𝑔(𝑧𝑠π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑠π‘₯) = (𝑦𝑠(𝑧𝑠π‘₯))) ↔ βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑠π‘₯) = ((𝑦𝑠π‘₯)𝐺(𝑧𝑠π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑠π‘₯) = (𝑦𝑠(𝑧𝑠π‘₯)))))
2116, 20anbi12d 631 . . . . . . . 8 (𝑔 = 𝐺 β†’ ((βˆ€π‘§ ∈ ran 𝑔(𝑦𝑠(π‘₯𝑔𝑧)) = ((𝑦𝑠π‘₯)𝑔(𝑦𝑠𝑧)) ∧ βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑠π‘₯) = ((𝑦𝑠π‘₯)𝑔(𝑧𝑠π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑠π‘₯) = (𝑦𝑠(𝑧𝑠π‘₯)))) ↔ (βˆ€π‘§ ∈ 𝑋 (𝑦𝑠(π‘₯𝐺𝑧)) = ((𝑦𝑠π‘₯)𝐺(𝑦𝑠𝑧)) ∧ βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑠π‘₯) = ((𝑦𝑠π‘₯)𝐺(𝑧𝑠π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑠π‘₯) = (𝑦𝑠(𝑧𝑠π‘₯))))))
2221ralbidv 3177 . . . . . . 7 (𝑔 = 𝐺 β†’ (βˆ€π‘¦ ∈ β„‚ (βˆ€π‘§ ∈ ran 𝑔(𝑦𝑠(π‘₯𝑔𝑧)) = ((𝑦𝑠π‘₯)𝑔(𝑦𝑠𝑧)) ∧ βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑠π‘₯) = ((𝑦𝑠π‘₯)𝑔(𝑧𝑠π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑠π‘₯) = (𝑦𝑠(𝑧𝑠π‘₯)))) ↔ βˆ€π‘¦ ∈ β„‚ (βˆ€π‘§ ∈ 𝑋 (𝑦𝑠(π‘₯𝐺𝑧)) = ((𝑦𝑠π‘₯)𝐺(𝑦𝑠𝑧)) ∧ βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑠π‘₯) = ((𝑦𝑠π‘₯)𝐺(𝑧𝑠π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑠π‘₯) = (𝑦𝑠(𝑧𝑠π‘₯))))))
2322anbi2d 629 . . . . . 6 (𝑔 = 𝐺 β†’ (((1𝑠π‘₯) = π‘₯ ∧ βˆ€π‘¦ ∈ β„‚ (βˆ€π‘§ ∈ ran 𝑔(𝑦𝑠(π‘₯𝑔𝑧)) = ((𝑦𝑠π‘₯)𝑔(𝑦𝑠𝑧)) ∧ βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑠π‘₯) = ((𝑦𝑠π‘₯)𝑔(𝑧𝑠π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑠π‘₯) = (𝑦𝑠(𝑧𝑠π‘₯))))) ↔ ((1𝑠π‘₯) = π‘₯ ∧ βˆ€π‘¦ ∈ β„‚ (βˆ€π‘§ ∈ 𝑋 (𝑦𝑠(π‘₯𝐺𝑧)) = ((𝑦𝑠π‘₯)𝐺(𝑦𝑠𝑧)) ∧ βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑠π‘₯) = ((𝑦𝑠π‘₯)𝐺(𝑧𝑠π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑠π‘₯) = (𝑦𝑠(𝑧𝑠π‘₯)))))))
246, 23raleqbidv 3342 . . . . 5 (𝑔 = 𝐺 β†’ (βˆ€π‘₯ ∈ ran 𝑔((1𝑠π‘₯) = π‘₯ ∧ βˆ€π‘¦ ∈ β„‚ (βˆ€π‘§ ∈ ran 𝑔(𝑦𝑠(π‘₯𝑔𝑧)) = ((𝑦𝑠π‘₯)𝑔(𝑦𝑠𝑧)) ∧ βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑠π‘₯) = ((𝑦𝑠π‘₯)𝑔(𝑧𝑠π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑠π‘₯) = (𝑦𝑠(𝑧𝑠π‘₯))))) ↔ βˆ€π‘₯ ∈ 𝑋 ((1𝑠π‘₯) = π‘₯ ∧ βˆ€π‘¦ ∈ β„‚ (βˆ€π‘§ ∈ 𝑋 (𝑦𝑠(π‘₯𝐺𝑧)) = ((𝑦𝑠π‘₯)𝐺(𝑦𝑠𝑧)) ∧ βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑠π‘₯) = ((𝑦𝑠π‘₯)𝐺(𝑧𝑠π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑠π‘₯) = (𝑦𝑠(𝑧𝑠π‘₯)))))))
253, 11, 243anbi123d 1436 . . . 4 (𝑔 = 𝐺 β†’ ((𝑔 ∈ AbelOp ∧ 𝑠:(β„‚ Γ— ran 𝑔)⟢ran 𝑔 ∧ βˆ€π‘₯ ∈ ran 𝑔((1𝑠π‘₯) = π‘₯ ∧ βˆ€π‘¦ ∈ β„‚ (βˆ€π‘§ ∈ ran 𝑔(𝑦𝑠(π‘₯𝑔𝑧)) = ((𝑦𝑠π‘₯)𝑔(𝑦𝑠𝑧)) ∧ βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑠π‘₯) = ((𝑦𝑠π‘₯)𝑔(𝑧𝑠π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑠π‘₯) = (𝑦𝑠(𝑧𝑠π‘₯)))))) ↔ (𝐺 ∈ AbelOp ∧ 𝑠:(β„‚ Γ— 𝑋)βŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 ((1𝑠π‘₯) = π‘₯ ∧ βˆ€π‘¦ ∈ β„‚ (βˆ€π‘§ ∈ 𝑋 (𝑦𝑠(π‘₯𝐺𝑧)) = ((𝑦𝑠π‘₯)𝐺(𝑦𝑠𝑧)) ∧ βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑠π‘₯) = ((𝑦𝑠π‘₯)𝐺(𝑧𝑠π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑠π‘₯) = (𝑦𝑠(𝑧𝑠π‘₯))))))))
262, 25sylbir 234 . . 3 (𝑔 = (1st β€˜π‘Š) β†’ ((𝑔 ∈ AbelOp ∧ 𝑠:(β„‚ Γ— ran 𝑔)⟢ran 𝑔 ∧ βˆ€π‘₯ ∈ ran 𝑔((1𝑠π‘₯) = π‘₯ ∧ βˆ€π‘¦ ∈ β„‚ (βˆ€π‘§ ∈ ran 𝑔(𝑦𝑠(π‘₯𝑔𝑧)) = ((𝑦𝑠π‘₯)𝑔(𝑦𝑠𝑧)) ∧ βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑠π‘₯) = ((𝑦𝑠π‘₯)𝑔(𝑧𝑠π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑠π‘₯) = (𝑦𝑠(𝑧𝑠π‘₯)))))) ↔ (𝐺 ∈ AbelOp ∧ 𝑠:(β„‚ Γ— 𝑋)βŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 ((1𝑠π‘₯) = π‘₯ ∧ βˆ€π‘¦ ∈ β„‚ (βˆ€π‘§ ∈ 𝑋 (𝑦𝑠(π‘₯𝐺𝑧)) = ((𝑦𝑠π‘₯)𝐺(𝑦𝑠𝑧)) ∧ βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑠π‘₯) = ((𝑦𝑠π‘₯)𝐺(𝑧𝑠π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑠π‘₯) = (𝑦𝑠(𝑧𝑠π‘₯))))))))
27 vciOLD.2 . . . . 5 𝑆 = (2nd β€˜π‘Š)
2827eqeq2i 2745 . . . 4 (𝑠 = 𝑆 ↔ 𝑠 = (2nd β€˜π‘Š))
29 feq1 6695 . . . . 5 (𝑠 = 𝑆 β†’ (𝑠:(β„‚ Γ— 𝑋)βŸΆπ‘‹ ↔ 𝑆:(β„‚ Γ— 𝑋)βŸΆπ‘‹))
30 oveq 7411 . . . . . . . 8 (𝑠 = 𝑆 β†’ (1𝑠π‘₯) = (1𝑆π‘₯))
3130eqeq1d 2734 . . . . . . 7 (𝑠 = 𝑆 β†’ ((1𝑠π‘₯) = π‘₯ ↔ (1𝑆π‘₯) = π‘₯))
32 oveq 7411 . . . . . . . . . . 11 (𝑠 = 𝑆 β†’ (𝑦𝑠(π‘₯𝐺𝑧)) = (𝑦𝑆(π‘₯𝐺𝑧)))
33 oveq 7411 . . . . . . . . . . . 12 (𝑠 = 𝑆 β†’ (𝑦𝑠π‘₯) = (𝑦𝑆π‘₯))
34 oveq 7411 . . . . . . . . . . . 12 (𝑠 = 𝑆 β†’ (𝑦𝑠𝑧) = (𝑦𝑆𝑧))
3533, 34oveq12d 7423 . . . . . . . . . . 11 (𝑠 = 𝑆 β†’ ((𝑦𝑠π‘₯)𝐺(𝑦𝑠𝑧)) = ((𝑦𝑆π‘₯)𝐺(𝑦𝑆𝑧)))
3632, 35eqeq12d 2748 . . . . . . . . . 10 (𝑠 = 𝑆 β†’ ((𝑦𝑠(π‘₯𝐺𝑧)) = ((𝑦𝑠π‘₯)𝐺(𝑦𝑠𝑧)) ↔ (𝑦𝑆(π‘₯𝐺𝑧)) = ((𝑦𝑆π‘₯)𝐺(𝑦𝑆𝑧))))
3736ralbidv 3177 . . . . . . . . 9 (𝑠 = 𝑆 β†’ (βˆ€π‘§ ∈ 𝑋 (𝑦𝑠(π‘₯𝐺𝑧)) = ((𝑦𝑠π‘₯)𝐺(𝑦𝑠𝑧)) ↔ βˆ€π‘§ ∈ 𝑋 (𝑦𝑆(π‘₯𝐺𝑧)) = ((𝑦𝑆π‘₯)𝐺(𝑦𝑆𝑧))))
38 oveq 7411 . . . . . . . . . . . 12 (𝑠 = 𝑆 β†’ ((𝑦 + 𝑧)𝑠π‘₯) = ((𝑦 + 𝑧)𝑆π‘₯))
39 oveq 7411 . . . . . . . . . . . . 13 (𝑠 = 𝑆 β†’ (𝑧𝑠π‘₯) = (𝑧𝑆π‘₯))
4033, 39oveq12d 7423 . . . . . . . . . . . 12 (𝑠 = 𝑆 β†’ ((𝑦𝑠π‘₯)𝐺(𝑧𝑠π‘₯)) = ((𝑦𝑆π‘₯)𝐺(𝑧𝑆π‘₯)))
4138, 40eqeq12d 2748 . . . . . . . . . . 11 (𝑠 = 𝑆 β†’ (((𝑦 + 𝑧)𝑠π‘₯) = ((𝑦𝑠π‘₯)𝐺(𝑧𝑠π‘₯)) ↔ ((𝑦 + 𝑧)𝑆π‘₯) = ((𝑦𝑆π‘₯)𝐺(𝑧𝑆π‘₯))))
42 oveq 7411 . . . . . . . . . . . 12 (𝑠 = 𝑆 β†’ ((𝑦 Β· 𝑧)𝑠π‘₯) = ((𝑦 Β· 𝑧)𝑆π‘₯))
4339oveq2d 7421 . . . . . . . . . . . . 13 (𝑠 = 𝑆 β†’ (𝑦𝑠(𝑧𝑠π‘₯)) = (𝑦𝑠(𝑧𝑆π‘₯)))
44 oveq 7411 . . . . . . . . . . . . 13 (𝑠 = 𝑆 β†’ (𝑦𝑠(𝑧𝑆π‘₯)) = (𝑦𝑆(𝑧𝑆π‘₯)))
4543, 44eqtrd 2772 . . . . . . . . . . . 12 (𝑠 = 𝑆 β†’ (𝑦𝑠(𝑧𝑠π‘₯)) = (𝑦𝑆(𝑧𝑆π‘₯)))
4642, 45eqeq12d 2748 . . . . . . . . . . 11 (𝑠 = 𝑆 β†’ (((𝑦 Β· 𝑧)𝑠π‘₯) = (𝑦𝑠(𝑧𝑠π‘₯)) ↔ ((𝑦 Β· 𝑧)𝑆π‘₯) = (𝑦𝑆(𝑧𝑆π‘₯))))
4741, 46anbi12d 631 . . . . . . . . . 10 (𝑠 = 𝑆 β†’ ((((𝑦 + 𝑧)𝑠π‘₯) = ((𝑦𝑠π‘₯)𝐺(𝑧𝑠π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑠π‘₯) = (𝑦𝑠(𝑧𝑠π‘₯))) ↔ (((𝑦 + 𝑧)𝑆π‘₯) = ((𝑦𝑆π‘₯)𝐺(𝑧𝑆π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑆π‘₯) = (𝑦𝑆(𝑧𝑆π‘₯)))))
4847ralbidv 3177 . . . . . . . . 9 (𝑠 = 𝑆 β†’ (βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑠π‘₯) = ((𝑦𝑠π‘₯)𝐺(𝑧𝑠π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑠π‘₯) = (𝑦𝑠(𝑧𝑠π‘₯))) ↔ βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑆π‘₯) = ((𝑦𝑆π‘₯)𝐺(𝑧𝑆π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑆π‘₯) = (𝑦𝑆(𝑧𝑆π‘₯)))))
4937, 48anbi12d 631 . . . . . . . 8 (𝑠 = 𝑆 β†’ ((βˆ€π‘§ ∈ 𝑋 (𝑦𝑠(π‘₯𝐺𝑧)) = ((𝑦𝑠π‘₯)𝐺(𝑦𝑠𝑧)) ∧ βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑠π‘₯) = ((𝑦𝑠π‘₯)𝐺(𝑧𝑠π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑠π‘₯) = (𝑦𝑠(𝑧𝑠π‘₯)))) ↔ (βˆ€π‘§ ∈ 𝑋 (𝑦𝑆(π‘₯𝐺𝑧)) = ((𝑦𝑆π‘₯)𝐺(𝑦𝑆𝑧)) ∧ βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑆π‘₯) = ((𝑦𝑆π‘₯)𝐺(𝑧𝑆π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑆π‘₯) = (𝑦𝑆(𝑧𝑆π‘₯))))))
5049ralbidv 3177 . . . . . . 7 (𝑠 = 𝑆 β†’ (βˆ€π‘¦ ∈ β„‚ (βˆ€π‘§ ∈ 𝑋 (𝑦𝑠(π‘₯𝐺𝑧)) = ((𝑦𝑠π‘₯)𝐺(𝑦𝑠𝑧)) ∧ βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑠π‘₯) = ((𝑦𝑠π‘₯)𝐺(𝑧𝑠π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑠π‘₯) = (𝑦𝑠(𝑧𝑠π‘₯)))) ↔ βˆ€π‘¦ ∈ β„‚ (βˆ€π‘§ ∈ 𝑋 (𝑦𝑆(π‘₯𝐺𝑧)) = ((𝑦𝑆π‘₯)𝐺(𝑦𝑆𝑧)) ∧ βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑆π‘₯) = ((𝑦𝑆π‘₯)𝐺(𝑧𝑆π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑆π‘₯) = (𝑦𝑆(𝑧𝑆π‘₯))))))
5131, 50anbi12d 631 . . . . . 6 (𝑠 = 𝑆 β†’ (((1𝑠π‘₯) = π‘₯ ∧ βˆ€π‘¦ ∈ β„‚ (βˆ€π‘§ ∈ 𝑋 (𝑦𝑠(π‘₯𝐺𝑧)) = ((𝑦𝑠π‘₯)𝐺(𝑦𝑠𝑧)) ∧ βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑠π‘₯) = ((𝑦𝑠π‘₯)𝐺(𝑧𝑠π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑠π‘₯) = (𝑦𝑠(𝑧𝑠π‘₯))))) ↔ ((1𝑆π‘₯) = π‘₯ ∧ βˆ€π‘¦ ∈ β„‚ (βˆ€π‘§ ∈ 𝑋 (𝑦𝑆(π‘₯𝐺𝑧)) = ((𝑦𝑆π‘₯)𝐺(𝑦𝑆𝑧)) ∧ βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑆π‘₯) = ((𝑦𝑆π‘₯)𝐺(𝑧𝑆π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑆π‘₯) = (𝑦𝑆(𝑧𝑆π‘₯)))))))
5251ralbidv 3177 . . . . 5 (𝑠 = 𝑆 β†’ (βˆ€π‘₯ ∈ 𝑋 ((1𝑠π‘₯) = π‘₯ ∧ βˆ€π‘¦ ∈ β„‚ (βˆ€π‘§ ∈ 𝑋 (𝑦𝑠(π‘₯𝐺𝑧)) = ((𝑦𝑠π‘₯)𝐺(𝑦𝑠𝑧)) ∧ βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑠π‘₯) = ((𝑦𝑠π‘₯)𝐺(𝑧𝑠π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑠π‘₯) = (𝑦𝑠(𝑧𝑠π‘₯))))) ↔ βˆ€π‘₯ ∈ 𝑋 ((1𝑆π‘₯) = π‘₯ ∧ βˆ€π‘¦ ∈ β„‚ (βˆ€π‘§ ∈ 𝑋 (𝑦𝑆(π‘₯𝐺𝑧)) = ((𝑦𝑆π‘₯)𝐺(𝑦𝑆𝑧)) ∧ βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑆π‘₯) = ((𝑦𝑆π‘₯)𝐺(𝑧𝑆π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑆π‘₯) = (𝑦𝑆(𝑧𝑆π‘₯)))))))
5329, 523anbi23d 1439 . . . 4 (𝑠 = 𝑆 β†’ ((𝐺 ∈ AbelOp ∧ 𝑠:(β„‚ Γ— 𝑋)βŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 ((1𝑠π‘₯) = π‘₯ ∧ βˆ€π‘¦ ∈ β„‚ (βˆ€π‘§ ∈ 𝑋 (𝑦𝑠(π‘₯𝐺𝑧)) = ((𝑦𝑠π‘₯)𝐺(𝑦𝑠𝑧)) ∧ βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑠π‘₯) = ((𝑦𝑠π‘₯)𝐺(𝑧𝑠π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑠π‘₯) = (𝑦𝑠(𝑧𝑠π‘₯)))))) ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(β„‚ Γ— 𝑋)βŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 ((1𝑆π‘₯) = π‘₯ ∧ βˆ€π‘¦ ∈ β„‚ (βˆ€π‘§ ∈ 𝑋 (𝑦𝑆(π‘₯𝐺𝑧)) = ((𝑦𝑆π‘₯)𝐺(𝑦𝑆𝑧)) ∧ βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑆π‘₯) = ((𝑦𝑆π‘₯)𝐺(𝑧𝑆π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑆π‘₯) = (𝑦𝑆(𝑧𝑆π‘₯))))))))
5428, 53sylbir 234 . . 3 (𝑠 = (2nd β€˜π‘Š) β†’ ((𝐺 ∈ AbelOp ∧ 𝑠:(β„‚ Γ— 𝑋)βŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 ((1𝑠π‘₯) = π‘₯ ∧ βˆ€π‘¦ ∈ β„‚ (βˆ€π‘§ ∈ 𝑋 (𝑦𝑠(π‘₯𝐺𝑧)) = ((𝑦𝑠π‘₯)𝐺(𝑦𝑠𝑧)) ∧ βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑠π‘₯) = ((𝑦𝑠π‘₯)𝐺(𝑧𝑠π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑠π‘₯) = (𝑦𝑠(𝑧𝑠π‘₯)))))) ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(β„‚ Γ— 𝑋)βŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 ((1𝑆π‘₯) = π‘₯ ∧ βˆ€π‘¦ ∈ β„‚ (βˆ€π‘§ ∈ 𝑋 (𝑦𝑆(π‘₯𝐺𝑧)) = ((𝑦𝑆π‘₯)𝐺(𝑦𝑆𝑧)) ∧ βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑆π‘₯) = ((𝑦𝑆π‘₯)𝐺(𝑧𝑆π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑆π‘₯) = (𝑦𝑆(𝑧𝑆π‘₯))))))))
5526, 54elopabi 8044 . 2 (π‘Š ∈ {βŸ¨π‘”, π‘ βŸ© ∣ (𝑔 ∈ AbelOp ∧ 𝑠:(β„‚ Γ— ran 𝑔)⟢ran 𝑔 ∧ βˆ€π‘₯ ∈ ran 𝑔((1𝑠π‘₯) = π‘₯ ∧ βˆ€π‘¦ ∈ β„‚ (βˆ€π‘§ ∈ ran 𝑔(𝑦𝑠(π‘₯𝑔𝑧)) = ((𝑦𝑠π‘₯)𝑔(𝑦𝑠𝑧)) ∧ βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑠π‘₯) = ((𝑦𝑠π‘₯)𝑔(𝑧𝑠π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑠π‘₯) = (𝑦𝑠(𝑧𝑠π‘₯))))))} β†’ (𝐺 ∈ AbelOp ∧ 𝑆:(β„‚ Γ— 𝑋)βŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 ((1𝑆π‘₯) = π‘₯ ∧ βˆ€π‘¦ ∈ β„‚ (βˆ€π‘§ ∈ 𝑋 (𝑦𝑆(π‘₯𝐺𝑧)) = ((𝑦𝑆π‘₯)𝐺(𝑦𝑆𝑧)) ∧ βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑆π‘₯) = ((𝑦𝑆π‘₯)𝐺(𝑧𝑆π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑆π‘₯) = (𝑦𝑆(𝑧𝑆π‘₯)))))))
56 df-vc 29799 . 2 CVecOLD = {βŸ¨π‘”, π‘ βŸ© ∣ (𝑔 ∈ AbelOp ∧ 𝑠:(β„‚ Γ— ran 𝑔)⟢ran 𝑔 ∧ βˆ€π‘₯ ∈ ran 𝑔((1𝑠π‘₯) = π‘₯ ∧ βˆ€π‘¦ ∈ β„‚ (βˆ€π‘§ ∈ ran 𝑔(𝑦𝑠(π‘₯𝑔𝑧)) = ((𝑦𝑠π‘₯)𝑔(𝑦𝑠𝑧)) ∧ βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑠π‘₯) = ((𝑦𝑠π‘₯)𝑔(𝑧𝑠π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑠π‘₯) = (𝑦𝑠(𝑧𝑠π‘₯))))))}
5755, 56eleq2s 2851 1 (π‘Š ∈ CVecOLD β†’ (𝐺 ∈ AbelOp ∧ 𝑆:(β„‚ Γ— 𝑋)βŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 ((1𝑆π‘₯) = π‘₯ ∧ βˆ€π‘¦ ∈ β„‚ (βˆ€π‘§ ∈ 𝑋 (𝑦𝑆(π‘₯𝐺𝑧)) = ((𝑦𝑆π‘₯)𝐺(𝑦𝑆𝑧)) ∧ βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑆π‘₯) = ((𝑦𝑆π‘₯)𝐺(𝑧𝑆π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑆π‘₯) = (𝑦𝑆(𝑧𝑆π‘₯)))))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  {copab 5209   Γ— cxp 5673  ran crn 5676  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  1st c1st 7969  2nd c2nd 7970  β„‚cc 11104  1c1 11107   + caddc 11109   Β· cmul 11111  AbelOpcablo 29784  CVecOLDcvc 29798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-ov 7408  df-1st 7971  df-2nd 7972  df-vc 29799
This theorem is referenced by:  vcsm  29802  vcidOLD  29804  vcdi  29805  vcdir  29806  vcass  29807  vcablo  29809
  Copyright terms: Public domain W3C validator