Step | Hyp | Ref
| Expression |
1 | | vciOLD.1 |
. . . . 5
⊢ 𝐺 = (1st ‘𝑊) |
2 | 1 | eqeq2i 2751 |
. . . 4
⊢ (𝑔 = 𝐺 ↔ 𝑔 = (1st ‘𝑊)) |
3 | | eleq1 2826 |
. . . . 5
⊢ (𝑔 = 𝐺 → (𝑔 ∈ AbelOp ↔ 𝐺 ∈ AbelOp)) |
4 | | rneq 5834 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺) |
5 | | vciOLD.3 |
. . . . . . 7
⊢ 𝑋 = ran 𝐺 |
6 | 4, 5 | eqtr4di 2797 |
. . . . . 6
⊢ (𝑔 = 𝐺 → ran 𝑔 = 𝑋) |
7 | | xpeq2 5601 |
. . . . . . . 8
⊢ (ran
𝑔 = 𝑋 → (ℂ × ran 𝑔) = (ℂ × 𝑋)) |
8 | 7 | feq2d 6570 |
. . . . . . 7
⊢ (ran
𝑔 = 𝑋 → (𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ↔ 𝑠:(ℂ × 𝑋)⟶ran 𝑔)) |
9 | | feq3 6567 |
. . . . . . 7
⊢ (ran
𝑔 = 𝑋 → (𝑠:(ℂ × 𝑋)⟶ran 𝑔 ↔ 𝑠:(ℂ × 𝑋)⟶𝑋)) |
10 | 8, 9 | bitrd 278 |
. . . . . 6
⊢ (ran
𝑔 = 𝑋 → (𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ↔ 𝑠:(ℂ × 𝑋)⟶𝑋)) |
11 | 6, 10 | syl 17 |
. . . . 5
⊢ (𝑔 = 𝐺 → (𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ↔ 𝑠:(ℂ × 𝑋)⟶𝑋)) |
12 | | oveq 7261 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝐺 → (𝑥𝑔𝑧) = (𝑥𝐺𝑧)) |
13 | 12 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝐺 → (𝑦𝑠(𝑥𝑔𝑧)) = (𝑦𝑠(𝑥𝐺𝑧))) |
14 | | oveq 7261 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝐺 → ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧))) |
15 | 13, 14 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → ((𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ↔ (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)))) |
16 | 6, 15 | raleqbidv 3327 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ↔ ∀𝑧 ∈ 𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)))) |
17 | | oveq 7261 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝐺 → ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥))) |
18 | 17 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝐺 → (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ↔ ((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)))) |
19 | 18 | anbi1d 629 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → ((((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))) ↔ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))) |
20 | 19 | ralbidv 3120 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))) ↔ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))) |
21 | 16, 20 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → ((∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))) ↔ (∀𝑧 ∈ 𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))) |
22 | 21 | ralbidv 3120 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))) ↔ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))) |
23 | 22 | anbi2d 628 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))) ↔ ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))) |
24 | 6, 23 | raleqbidv 3327 |
. . . . 5
⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))) ↔ ∀𝑥 ∈ 𝑋 ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))) |
25 | 3, 11, 24 | 3anbi123d 1434 |
. . . 4
⊢ (𝑔 = 𝐺 → ((𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))) ↔ (𝐺 ∈ AbelOp ∧ 𝑠:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))))) |
26 | 2, 25 | sylbir 234 |
. . 3
⊢ (𝑔 = (1st ‘𝑊) → ((𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))) ↔ (𝐺 ∈ AbelOp ∧ 𝑠:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))))) |
27 | | vciOLD.2 |
. . . . 5
⊢ 𝑆 = (2nd ‘𝑊) |
28 | 27 | eqeq2i 2751 |
. . . 4
⊢ (𝑠 = 𝑆 ↔ 𝑠 = (2nd ‘𝑊)) |
29 | | feq1 6565 |
. . . . 5
⊢ (𝑠 = 𝑆 → (𝑠:(ℂ × 𝑋)⟶𝑋 ↔ 𝑆:(ℂ × 𝑋)⟶𝑋)) |
30 | | oveq 7261 |
. . . . . . . 8
⊢ (𝑠 = 𝑆 → (1𝑠𝑥) = (1𝑆𝑥)) |
31 | 30 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → ((1𝑠𝑥) = 𝑥 ↔ (1𝑆𝑥) = 𝑥)) |
32 | | oveq 7261 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑆 → (𝑦𝑠(𝑥𝐺𝑧)) = (𝑦𝑆(𝑥𝐺𝑧))) |
33 | | oveq 7261 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑆 → (𝑦𝑠𝑥) = (𝑦𝑆𝑥)) |
34 | | oveq 7261 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑆 → (𝑦𝑠𝑧) = (𝑦𝑆𝑧)) |
35 | 33, 34 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑆 → ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧))) |
36 | 32, 35 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑆 → ((𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ↔ (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))) |
37 | 36 | ralbidv 3120 |
. . . . . . . . 9
⊢ (𝑠 = 𝑆 → (∀𝑧 ∈ 𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ↔ ∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))) |
38 | | oveq 7261 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑆 → ((𝑦 + 𝑧)𝑠𝑥) = ((𝑦 + 𝑧)𝑆𝑥)) |
39 | | oveq 7261 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑆 → (𝑧𝑠𝑥) = (𝑧𝑆𝑥)) |
40 | 33, 39 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑆 → ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥))) |
41 | 38, 40 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑆 → (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ↔ ((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)))) |
42 | | oveq 7261 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑆 → ((𝑦 · 𝑧)𝑠𝑥) = ((𝑦 · 𝑧)𝑆𝑥)) |
43 | 39 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑆 → (𝑦𝑠(𝑧𝑠𝑥)) = (𝑦𝑠(𝑧𝑆𝑥))) |
44 | | oveq 7261 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑆 → (𝑦𝑠(𝑧𝑆𝑥)) = (𝑦𝑆(𝑧𝑆𝑥))) |
45 | 43, 44 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑆 → (𝑦𝑠(𝑧𝑠𝑥)) = (𝑦𝑆(𝑧𝑆𝑥))) |
46 | 42, 45 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑆 → (((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)) ↔ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))) |
47 | 41, 46 | anbi12d 630 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑆 → ((((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))) ↔ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))) |
48 | 47 | ralbidv 3120 |
. . . . . . . . 9
⊢ (𝑠 = 𝑆 → (∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))) ↔ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))) |
49 | 37, 48 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑠 = 𝑆 → ((∀𝑧 ∈ 𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))) ↔ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))) |
50 | 49 | ralbidv 3120 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → (∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))) ↔ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))) |
51 | 31, 50 | anbi12d 630 |
. . . . . 6
⊢ (𝑠 = 𝑆 → (((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))) ↔ ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))) |
52 | 51 | ralbidv 3120 |
. . . . 5
⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ 𝑋 ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))) ↔ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))) |
53 | 29, 52 | 3anbi23d 1437 |
. . . 4
⊢ (𝑠 = 𝑆 → ((𝐺 ∈ AbelOp ∧ 𝑠:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))) ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))) |
54 | 28, 53 | sylbir 234 |
. . 3
⊢ (𝑠 = (2nd ‘𝑊) → ((𝐺 ∈ AbelOp ∧ 𝑠:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))) ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))) |
55 | 26, 54 | elopabi 7875 |
. 2
⊢ (𝑊 ∈ {〈𝑔, 𝑠〉 ∣ (𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))} → (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))) |
56 | | df-vc 28822 |
. 2
⊢
CVecOLD = {〈𝑔, 𝑠〉 ∣ (𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))} |
57 | 55, 56 | eleq2s 2857 |
1
⊢ (𝑊 ∈ CVecOLD
→ (𝐺 ∈ AbelOp
∧ 𝑆:(ℂ ×
𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))) |