MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vciOLD Structured version   Visualization version   GIF version

Theorem vciOLD 28642
Description: Obsolete version of cvsi 24027. The properties of a complex vector space, which is an Abelian group (i.e. the vectors, with the operation of vector addition) accompanied by a scalar multiplication operation on the field of complex numbers. The variable 𝑊 was chosen because V is already used for the universal class. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
vciOLD.1 𝐺 = (1st𝑊)
vciOLD.2 𝑆 = (2nd𝑊)
vciOLD.3 𝑋 = ran 𝐺
Assertion
Ref Expression
vciOLD (𝑊 ∈ CVecOLD → (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐺   𝑥,𝑆,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝑊(𝑥,𝑦,𝑧)

Proof of Theorem vciOLD
Dummy variables 𝑔 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vciOLD.1 . . . . 5 𝐺 = (1st𝑊)
21eqeq2i 2750 . . . 4 (𝑔 = 𝐺𝑔 = (1st𝑊))
3 eleq1 2825 . . . . 5 (𝑔 = 𝐺 → (𝑔 ∈ AbelOp ↔ 𝐺 ∈ AbelOp))
4 rneq 5805 . . . . . . 7 (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺)
5 vciOLD.3 . . . . . . 7 𝑋 = ran 𝐺
64, 5eqtr4di 2796 . . . . . 6 (𝑔 = 𝐺 → ran 𝑔 = 𝑋)
7 xpeq2 5572 . . . . . . . 8 (ran 𝑔 = 𝑋 → (ℂ × ran 𝑔) = (ℂ × 𝑋))
87feq2d 6531 . . . . . . 7 (ran 𝑔 = 𝑋 → (𝑠:(ℂ × ran 𝑔)⟶ran 𝑔𝑠:(ℂ × 𝑋)⟶ran 𝑔))
9 feq3 6528 . . . . . . 7 (ran 𝑔 = 𝑋 → (𝑠:(ℂ × 𝑋)⟶ran 𝑔𝑠:(ℂ × 𝑋)⟶𝑋))
108, 9bitrd 282 . . . . . 6 (ran 𝑔 = 𝑋 → (𝑠:(ℂ × ran 𝑔)⟶ran 𝑔𝑠:(ℂ × 𝑋)⟶𝑋))
116, 10syl 17 . . . . 5 (𝑔 = 𝐺 → (𝑠:(ℂ × ran 𝑔)⟶ran 𝑔𝑠:(ℂ × 𝑋)⟶𝑋))
12 oveq 7219 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (𝑥𝑔𝑧) = (𝑥𝐺𝑧))
1312oveq2d 7229 . . . . . . . . . . 11 (𝑔 = 𝐺 → (𝑦𝑠(𝑥𝑔𝑧)) = (𝑦𝑠(𝑥𝐺𝑧)))
14 oveq 7219 . . . . . . . . . . 11 (𝑔 = 𝐺 → ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)))
1513, 14eqeq12d 2753 . . . . . . . . . 10 (𝑔 = 𝐺 → ((𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ↔ (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧))))
166, 15raleqbidv 3313 . . . . . . . . 9 (𝑔 = 𝐺 → (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ↔ ∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧))))
17 oveq 7219 . . . . . . . . . . . 12 (𝑔 = 𝐺 → ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)))
1817eqeq2d 2748 . . . . . . . . . . 11 (𝑔 = 𝐺 → (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ↔ ((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥))))
1918anbi1d 633 . . . . . . . . . 10 (𝑔 = 𝐺 → ((((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))) ↔ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))
2019ralbidv 3118 . . . . . . . . 9 (𝑔 = 𝐺 → (∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))) ↔ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))
2116, 20anbi12d 634 . . . . . . . 8 (𝑔 = 𝐺 → ((∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))) ↔ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))
2221ralbidv 3118 . . . . . . 7 (𝑔 = 𝐺 → (∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))) ↔ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))
2322anbi2d 632 . . . . . 6 (𝑔 = 𝐺 → (((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))) ↔ ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))))
246, 23raleqbidv 3313 . . . . 5 (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))) ↔ ∀𝑥𝑋 ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))))
253, 11, 243anbi123d 1438 . . . 4 (𝑔 = 𝐺 → ((𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))) ↔ (𝐺 ∈ AbelOp ∧ 𝑠:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))))
262, 25sylbir 238 . . 3 (𝑔 = (1st𝑊) → ((𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))) ↔ (𝐺 ∈ AbelOp ∧ 𝑠:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))))
27 vciOLD.2 . . . . 5 𝑆 = (2nd𝑊)
2827eqeq2i 2750 . . . 4 (𝑠 = 𝑆𝑠 = (2nd𝑊))
29 feq1 6526 . . . . 5 (𝑠 = 𝑆 → (𝑠:(ℂ × 𝑋)⟶𝑋𝑆:(ℂ × 𝑋)⟶𝑋))
30 oveq 7219 . . . . . . . 8 (𝑠 = 𝑆 → (1𝑠𝑥) = (1𝑆𝑥))
3130eqeq1d 2739 . . . . . . 7 (𝑠 = 𝑆 → ((1𝑠𝑥) = 𝑥 ↔ (1𝑆𝑥) = 𝑥))
32 oveq 7219 . . . . . . . . . . 11 (𝑠 = 𝑆 → (𝑦𝑠(𝑥𝐺𝑧)) = (𝑦𝑆(𝑥𝐺𝑧)))
33 oveq 7219 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (𝑦𝑠𝑥) = (𝑦𝑆𝑥))
34 oveq 7219 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (𝑦𝑠𝑧) = (𝑦𝑆𝑧))
3533, 34oveq12d 7231 . . . . . . . . . . 11 (𝑠 = 𝑆 → ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
3632, 35eqeq12d 2753 . . . . . . . . . 10 (𝑠 = 𝑆 → ((𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ↔ (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧))))
3736ralbidv 3118 . . . . . . . . 9 (𝑠 = 𝑆 → (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ↔ ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧))))
38 oveq 7219 . . . . . . . . . . . 12 (𝑠 = 𝑆 → ((𝑦 + 𝑧)𝑠𝑥) = ((𝑦 + 𝑧)𝑆𝑥))
39 oveq 7219 . . . . . . . . . . . . 13 (𝑠 = 𝑆 → (𝑧𝑠𝑥) = (𝑧𝑆𝑥))
4033, 39oveq12d 7231 . . . . . . . . . . . 12 (𝑠 = 𝑆 → ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)))
4138, 40eqeq12d 2753 . . . . . . . . . . 11 (𝑠 = 𝑆 → (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ↔ ((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥))))
42 oveq 7219 . . . . . . . . . . . 12 (𝑠 = 𝑆 → ((𝑦 · 𝑧)𝑠𝑥) = ((𝑦 · 𝑧)𝑆𝑥))
4339oveq2d 7229 . . . . . . . . . . . . 13 (𝑠 = 𝑆 → (𝑦𝑠(𝑧𝑠𝑥)) = (𝑦𝑠(𝑧𝑆𝑥)))
44 oveq 7219 . . . . . . . . . . . . 13 (𝑠 = 𝑆 → (𝑦𝑠(𝑧𝑆𝑥)) = (𝑦𝑆(𝑧𝑆𝑥)))
4543, 44eqtrd 2777 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (𝑦𝑠(𝑧𝑠𝑥)) = (𝑦𝑆(𝑧𝑆𝑥)))
4642, 45eqeq12d 2753 . . . . . . . . . . 11 (𝑠 = 𝑆 → (((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)) ↔ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))
4741, 46anbi12d 634 . . . . . . . . . 10 (𝑠 = 𝑆 → ((((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))) ↔ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))
4847ralbidv 3118 . . . . . . . . 9 (𝑠 = 𝑆 → (∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))) ↔ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))
4937, 48anbi12d 634 . . . . . . . 8 (𝑠 = 𝑆 → ((∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))) ↔ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))
5049ralbidv 3118 . . . . . . 7 (𝑠 = 𝑆 → (∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))) ↔ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))
5131, 50anbi12d 634 . . . . . 6 (𝑠 = 𝑆 → (((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))) ↔ ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
5251ralbidv 3118 . . . . 5 (𝑠 = 𝑆 → (∀𝑥𝑋 ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))) ↔ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
5329, 523anbi23d 1441 . . . 4 (𝑠 = 𝑆 → ((𝐺 ∈ AbelOp ∧ 𝑠:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))) ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))))
5428, 53sylbir 238 . . 3 (𝑠 = (2nd𝑊) → ((𝐺 ∈ AbelOp ∧ 𝑠:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))) ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))))
5526, 54elopabi 7832 . 2 (𝑊 ∈ {⟨𝑔, 𝑠⟩ ∣ (𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))} → (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
56 df-vc 28640 . 2 CVecOLD = {⟨𝑔, 𝑠⟩ ∣ (𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))}
5755, 56eleq2s 2856 1 (𝑊 ∈ CVecOLD → (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061  {copab 5115   × cxp 5549  ran crn 5552  wf 6376  cfv 6380  (class class class)co 7213  1st c1st 7759  2nd c2nd 7760  cc 10727  1c1 10730   + caddc 10732   · cmul 10734  AbelOpcablo 28625  CVecOLDcvc 28639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-fv 6388  df-ov 7216  df-1st 7761  df-2nd 7762  df-vc 28640
This theorem is referenced by:  vcsm  28643  vcidOLD  28645  vcdi  28646  vcdir  28647  vcass  28648  vcablo  28650
  Copyright terms: Public domain W3C validator