Step | Hyp | Ref
| Expression |
1 | | df-vc 29799 |
. . 3
β’
CVecOLD = {β¨π, π β© β£ (π β AbelOp β§ π :(β Γ ran π)βΆran π β§ βπ₯ β ran π((1π π₯) = π₯ β§ βπ¦ β β (βπ§ β ran π(π¦π (π₯ππ§)) = ((π¦π π₯)π(π¦π π§)) β§ βπ§ β β (((π¦ + π§)π π₯) = ((π¦π π₯)π(π§π π₯)) β§ ((π¦ Β· π§)π π₯) = (π¦π (π§π π₯))))))} |
2 | 1 | eleq2i 2825 |
. 2
β’
(β¨πΊ, πβ© β CVecOLD
β β¨πΊ, πβ© β {β¨π, π β© β£ (π β AbelOp β§ π :(β Γ ran π)βΆran π β§ βπ₯ β ran π((1π π₯) = π₯ β§ βπ¦ β β (βπ§ β ran π(π¦π (π₯ππ§)) = ((π¦π π₯)π(π¦π π§)) β§ βπ§ β β (((π¦ + π§)π π₯) = ((π¦π π₯)π(π§π π₯)) β§ ((π¦ Β· π§)π π₯) = (π¦π (π§π π₯))))))}) |
3 | | eleq1 2821 |
. . . 4
β’ (π = πΊ β (π β AbelOp β πΊ β AbelOp)) |
4 | | rneq 5933 |
. . . . . 6
β’ (π = πΊ β ran π = ran πΊ) |
5 | | isvclem.1 |
. . . . . 6
β’ π = ran πΊ |
6 | 4, 5 | eqtr4di 2790 |
. . . . 5
β’ (π = πΊ β ran π = π) |
7 | | xpeq2 5696 |
. . . . . . 7
β’ (ran
π = π β (β Γ ran π) = (β Γ π)) |
8 | 7 | feq2d 6700 |
. . . . . 6
β’ (ran
π = π β (π :(β Γ ran π)βΆran π β π :(β Γ π)βΆran π)) |
9 | | feq3 6697 |
. . . . . 6
β’ (ran
π = π β (π :(β Γ π)βΆran π β π :(β Γ π)βΆπ)) |
10 | 8, 9 | bitrd 278 |
. . . . 5
β’ (ran
π = π β (π :(β Γ ran π)βΆran π β π :(β Γ π)βΆπ)) |
11 | 6, 10 | syl 17 |
. . . 4
β’ (π = πΊ β (π :(β Γ ran π)βΆran π β π :(β Γ π)βΆπ)) |
12 | | oveq 7411 |
. . . . . . . . . . 11
β’ (π = πΊ β (π₯ππ§) = (π₯πΊπ§)) |
13 | 12 | oveq2d 7421 |
. . . . . . . . . 10
β’ (π = πΊ β (π¦π (π₯ππ§)) = (π¦π (π₯πΊπ§))) |
14 | | oveq 7411 |
. . . . . . . . . 10
β’ (π = πΊ β ((π¦π π₯)π(π¦π π§)) = ((π¦π π₯)πΊ(π¦π π§))) |
15 | 13, 14 | eqeq12d 2748 |
. . . . . . . . 9
β’ (π = πΊ β ((π¦π (π₯ππ§)) = ((π¦π π₯)π(π¦π π§)) β (π¦π (π₯πΊπ§)) = ((π¦π π₯)πΊ(π¦π π§)))) |
16 | 6, 15 | raleqbidv 3342 |
. . . . . . . 8
β’ (π = πΊ β (βπ§ β ran π(π¦π (π₯ππ§)) = ((π¦π π₯)π(π¦π π§)) β βπ§ β π (π¦π (π₯πΊπ§)) = ((π¦π π₯)πΊ(π¦π π§)))) |
17 | | oveq 7411 |
. . . . . . . . . . 11
β’ (π = πΊ β ((π¦π π₯)π(π§π π₯)) = ((π¦π π₯)πΊ(π§π π₯))) |
18 | 17 | eqeq2d 2743 |
. . . . . . . . . 10
β’ (π = πΊ β (((π¦ + π§)π π₯) = ((π¦π π₯)π(π§π π₯)) β ((π¦ + π§)π π₯) = ((π¦π π₯)πΊ(π§π π₯)))) |
19 | 18 | anbi1d 630 |
. . . . . . . . 9
β’ (π = πΊ β ((((π¦ + π§)π π₯) = ((π¦π π₯)π(π§π π₯)) β§ ((π¦ Β· π§)π π₯) = (π¦π (π§π π₯))) β (((π¦ + π§)π π₯) = ((π¦π π₯)πΊ(π§π π₯)) β§ ((π¦ Β· π§)π π₯) = (π¦π (π§π π₯))))) |
20 | 19 | ralbidv 3177 |
. . . . . . . 8
β’ (π = πΊ β (βπ§ β β (((π¦ + π§)π π₯) = ((π¦π π₯)π(π§π π₯)) β§ ((π¦ Β· π§)π π₯) = (π¦π (π§π π₯))) β βπ§ β β (((π¦ + π§)π π₯) = ((π¦π π₯)πΊ(π§π π₯)) β§ ((π¦ Β· π§)π π₯) = (π¦π (π§π π₯))))) |
21 | 16, 20 | anbi12d 631 |
. . . . . . 7
β’ (π = πΊ β ((βπ§ β ran π(π¦π (π₯ππ§)) = ((π¦π π₯)π(π¦π π§)) β§ βπ§ β β (((π¦ + π§)π π₯) = ((π¦π π₯)π(π§π π₯)) β§ ((π¦ Β· π§)π π₯) = (π¦π (π§π π₯)))) β (βπ§ β π (π¦π (π₯πΊπ§)) = ((π¦π π₯)πΊ(π¦π π§)) β§ βπ§ β β (((π¦ + π§)π π₯) = ((π¦π π₯)πΊ(π§π π₯)) β§ ((π¦ Β· π§)π π₯) = (π¦π (π§π π₯)))))) |
22 | 21 | ralbidv 3177 |
. . . . . 6
β’ (π = πΊ β (βπ¦ β β (βπ§ β ran π(π¦π (π₯ππ§)) = ((π¦π π₯)π(π¦π π§)) β§ βπ§ β β (((π¦ + π§)π π₯) = ((π¦π π₯)π(π§π π₯)) β§ ((π¦ Β· π§)π π₯) = (π¦π (π§π π₯)))) β βπ¦ β β (βπ§ β π (π¦π (π₯πΊπ§)) = ((π¦π π₯)πΊ(π¦π π§)) β§ βπ§ β β (((π¦ + π§)π π₯) = ((π¦π π₯)πΊ(π§π π₯)) β§ ((π¦ Β· π§)π π₯) = (π¦π (π§π π₯)))))) |
23 | 22 | anbi2d 629 |
. . . . 5
β’ (π = πΊ β (((1π π₯) = π₯ β§ βπ¦ β β (βπ§ β ran π(π¦π (π₯ππ§)) = ((π¦π π₯)π(π¦π π§)) β§ βπ§ β β (((π¦ + π§)π π₯) = ((π¦π π₯)π(π§π π₯)) β§ ((π¦ Β· π§)π π₯) = (π¦π (π§π π₯))))) β ((1π π₯) = π₯ β§ βπ¦ β β (βπ§ β π (π¦π (π₯πΊπ§)) = ((π¦π π₯)πΊ(π¦π π§)) β§ βπ§ β β (((π¦ + π§)π π₯) = ((π¦π π₯)πΊ(π§π π₯)) β§ ((π¦ Β· π§)π π₯) = (π¦π (π§π π₯))))))) |
24 | 6, 23 | raleqbidv 3342 |
. . . 4
β’ (π = πΊ β (βπ₯ β ran π((1π π₯) = π₯ β§ βπ¦ β β (βπ§ β ran π(π¦π (π₯ππ§)) = ((π¦π π₯)π(π¦π π§)) β§ βπ§ β β (((π¦ + π§)π π₯) = ((π¦π π₯)π(π§π π₯)) β§ ((π¦ Β· π§)π π₯) = (π¦π (π§π π₯))))) β βπ₯ β π ((1π π₯) = π₯ β§ βπ¦ β β (βπ§ β π (π¦π (π₯πΊπ§)) = ((π¦π π₯)πΊ(π¦π π§)) β§ βπ§ β β (((π¦ + π§)π π₯) = ((π¦π π₯)πΊ(π§π π₯)) β§ ((π¦ Β· π§)π π₯) = (π¦π (π§π π₯))))))) |
25 | 3, 11, 24 | 3anbi123d 1436 |
. . 3
β’ (π = πΊ β ((π β AbelOp β§ π :(β Γ ran π)βΆran π β§ βπ₯ β ran π((1π π₯) = π₯ β§ βπ¦ β β (βπ§ β ran π(π¦π (π₯ππ§)) = ((π¦π π₯)π(π¦π π§)) β§ βπ§ β β (((π¦ + π§)π π₯) = ((π¦π π₯)π(π§π π₯)) β§ ((π¦ Β· π§)π π₯) = (π¦π (π§π π₯)))))) β (πΊ β AbelOp β§ π :(β Γ π)βΆπ β§ βπ₯ β π ((1π π₯) = π₯ β§ βπ¦ β β (βπ§ β π (π¦π (π₯πΊπ§)) = ((π¦π π₯)πΊ(π¦π π§)) β§ βπ§ β β (((π¦ + π§)π π₯) = ((π¦π π₯)πΊ(π§π π₯)) β§ ((π¦ Β· π§)π π₯) = (π¦π (π§π π₯)))))))) |
26 | | feq1 6695 |
. . . 4
β’ (π = π β (π :(β Γ π)βΆπ β π:(β Γ π)βΆπ)) |
27 | | oveq 7411 |
. . . . . . 7
β’ (π = π β (1π π₯) = (1ππ₯)) |
28 | 27 | eqeq1d 2734 |
. . . . . 6
β’ (π = π β ((1π π₯) = π₯ β (1ππ₯) = π₯)) |
29 | | oveq 7411 |
. . . . . . . . . 10
β’ (π = π β (π¦π (π₯πΊπ§)) = (π¦π(π₯πΊπ§))) |
30 | | oveq 7411 |
. . . . . . . . . . 11
β’ (π = π β (π¦π π₯) = (π¦ππ₯)) |
31 | | oveq 7411 |
. . . . . . . . . . 11
β’ (π = π β (π¦π π§) = (π¦ππ§)) |
32 | 30, 31 | oveq12d 7423 |
. . . . . . . . . 10
β’ (π = π β ((π¦π π₯)πΊ(π¦π π§)) = ((π¦ππ₯)πΊ(π¦ππ§))) |
33 | 29, 32 | eqeq12d 2748 |
. . . . . . . . 9
β’ (π = π β ((π¦π (π₯πΊπ§)) = ((π¦π π₯)πΊ(π¦π π§)) β (π¦π(π₯πΊπ§)) = ((π¦ππ₯)πΊ(π¦ππ§)))) |
34 | 33 | ralbidv 3177 |
. . . . . . . 8
β’ (π = π β (βπ§ β π (π¦π (π₯πΊπ§)) = ((π¦π π₯)πΊ(π¦π π§)) β βπ§ β π (π¦π(π₯πΊπ§)) = ((π¦ππ₯)πΊ(π¦ππ§)))) |
35 | | oveq 7411 |
. . . . . . . . . . 11
β’ (π = π β ((π¦ + π§)π π₯) = ((π¦ + π§)ππ₯)) |
36 | | oveq 7411 |
. . . . . . . . . . . 12
β’ (π = π β (π§π π₯) = (π§ππ₯)) |
37 | 30, 36 | oveq12d 7423 |
. . . . . . . . . . 11
β’ (π = π β ((π¦π π₯)πΊ(π§π π₯)) = ((π¦ππ₯)πΊ(π§ππ₯))) |
38 | 35, 37 | eqeq12d 2748 |
. . . . . . . . . 10
β’ (π = π β (((π¦ + π§)π π₯) = ((π¦π π₯)πΊ(π§π π₯)) β ((π¦ + π§)ππ₯) = ((π¦ππ₯)πΊ(π§ππ₯)))) |
39 | | oveq 7411 |
. . . . . . . . . . 11
β’ (π = π β ((π¦ Β· π§)π π₯) = ((π¦ Β· π§)ππ₯)) |
40 | | oveq 7411 |
. . . . . . . . . . . 12
β’ (π = π β (π¦π (π§π π₯)) = (π¦π(π§π π₯))) |
41 | 36 | oveq2d 7421 |
. . . . . . . . . . . 12
β’ (π = π β (π¦π(π§π π₯)) = (π¦π(π§ππ₯))) |
42 | 40, 41 | eqtrd 2772 |
. . . . . . . . . . 11
β’ (π = π β (π¦π (π§π π₯)) = (π¦π(π§ππ₯))) |
43 | 39, 42 | eqeq12d 2748 |
. . . . . . . . . 10
β’ (π = π β (((π¦ Β· π§)π π₯) = (π¦π (π§π π₯)) β ((π¦ Β· π§)ππ₯) = (π¦π(π§ππ₯)))) |
44 | 38, 43 | anbi12d 631 |
. . . . . . . . 9
β’ (π = π β ((((π¦ + π§)π π₯) = ((π¦π π₯)πΊ(π§π π₯)) β§ ((π¦ Β· π§)π π₯) = (π¦π (π§π π₯))) β (((π¦ + π§)ππ₯) = ((π¦ππ₯)πΊ(π§ππ₯)) β§ ((π¦ Β· π§)ππ₯) = (π¦π(π§ππ₯))))) |
45 | 44 | ralbidv 3177 |
. . . . . . . 8
β’ (π = π β (βπ§ β β (((π¦ + π§)π π₯) = ((π¦π π₯)πΊ(π§π π₯)) β§ ((π¦ Β· π§)π π₯) = (π¦π (π§π π₯))) β βπ§ β β (((π¦ + π§)ππ₯) = ((π¦ππ₯)πΊ(π§ππ₯)) β§ ((π¦ Β· π§)ππ₯) = (π¦π(π§ππ₯))))) |
46 | 34, 45 | anbi12d 631 |
. . . . . . 7
β’ (π = π β ((βπ§ β π (π¦π (π₯πΊπ§)) = ((π¦π π₯)πΊ(π¦π π§)) β§ βπ§ β β (((π¦ + π§)π π₯) = ((π¦π π₯)πΊ(π§π π₯)) β§ ((π¦ Β· π§)π π₯) = (π¦π (π§π π₯)))) β (βπ§ β π (π¦π(π₯πΊπ§)) = ((π¦ππ₯)πΊ(π¦ππ§)) β§ βπ§ β β (((π¦ + π§)ππ₯) = ((π¦ππ₯)πΊ(π§ππ₯)) β§ ((π¦ Β· π§)ππ₯) = (π¦π(π§ππ₯)))))) |
47 | 46 | ralbidv 3177 |
. . . . . 6
β’ (π = π β (βπ¦ β β (βπ§ β π (π¦π (π₯πΊπ§)) = ((π¦π π₯)πΊ(π¦π π§)) β§ βπ§ β β (((π¦ + π§)π π₯) = ((π¦π π₯)πΊ(π§π π₯)) β§ ((π¦ Β· π§)π π₯) = (π¦π (π§π π₯)))) β βπ¦ β β (βπ§ β π (π¦π(π₯πΊπ§)) = ((π¦ππ₯)πΊ(π¦ππ§)) β§ βπ§ β β (((π¦ + π§)ππ₯) = ((π¦ππ₯)πΊ(π§ππ₯)) β§ ((π¦ Β· π§)ππ₯) = (π¦π(π§ππ₯)))))) |
48 | 28, 47 | anbi12d 631 |
. . . . 5
β’ (π = π β (((1π π₯) = π₯ β§ βπ¦ β β (βπ§ β π (π¦π (π₯πΊπ§)) = ((π¦π π₯)πΊ(π¦π π§)) β§ βπ§ β β (((π¦ + π§)π π₯) = ((π¦π π₯)πΊ(π§π π₯)) β§ ((π¦ Β· π§)π π₯) = (π¦π (π§π π₯))))) β ((1ππ₯) = π₯ β§ βπ¦ β β (βπ§ β π (π¦π(π₯πΊπ§)) = ((π¦ππ₯)πΊ(π¦ππ§)) β§ βπ§ β β (((π¦ + π§)ππ₯) = ((π¦ππ₯)πΊ(π§ππ₯)) β§ ((π¦ Β· π§)ππ₯) = (π¦π(π§ππ₯))))))) |
49 | 48 | ralbidv 3177 |
. . . 4
β’ (π = π β (βπ₯ β π ((1π π₯) = π₯ β§ βπ¦ β β (βπ§ β π (π¦π (π₯πΊπ§)) = ((π¦π π₯)πΊ(π¦π π§)) β§ βπ§ β β (((π¦ + π§)π π₯) = ((π¦π π₯)πΊ(π§π π₯)) β§ ((π¦ Β· π§)π π₯) = (π¦π (π§π π₯))))) β βπ₯ β π ((1ππ₯) = π₯ β§ βπ¦ β β (βπ§ β π (π¦π(π₯πΊπ§)) = ((π¦ππ₯)πΊ(π¦ππ§)) β§ βπ§ β β (((π¦ + π§)ππ₯) = ((π¦ππ₯)πΊ(π§ππ₯)) β§ ((π¦ Β· π§)ππ₯) = (π¦π(π§ππ₯))))))) |
50 | 26, 49 | 3anbi23d 1439 |
. . 3
β’ (π = π β ((πΊ β AbelOp β§ π :(β Γ π)βΆπ β§ βπ₯ β π ((1π π₯) = π₯ β§ βπ¦ β β (βπ§ β π (π¦π (π₯πΊπ§)) = ((π¦π π₯)πΊ(π¦π π§)) β§ βπ§ β β (((π¦ + π§)π π₯) = ((π¦π π₯)πΊ(π§π π₯)) β§ ((π¦ Β· π§)π π₯) = (π¦π (π§π π₯)))))) β (πΊ β AbelOp β§ π:(β Γ π)βΆπ β§ βπ₯ β π ((1ππ₯) = π₯ β§ βπ¦ β β (βπ§ β π (π¦π(π₯πΊπ§)) = ((π¦ππ₯)πΊ(π¦ππ§)) β§ βπ§ β β (((π¦ + π§)ππ₯) = ((π¦ππ₯)πΊ(π§ππ₯)) β§ ((π¦ Β· π§)ππ₯) = (π¦π(π§ππ₯)))))))) |
51 | 25, 50 | opelopabg 5537 |
. 2
β’ ((πΊ β V β§ π β V) β (β¨πΊ, πβ© β {β¨π, π β© β£ (π β AbelOp β§ π :(β Γ ran π)βΆran π β§ βπ₯ β ran π((1π π₯) = π₯ β§ βπ¦ β β (βπ§ β ran π(π¦π (π₯ππ§)) = ((π¦π π₯)π(π¦π π§)) β§ βπ§ β β (((π¦ + π§)π π₯) = ((π¦π π₯)π(π§π π₯)) β§ ((π¦ Β· π§)π π₯) = (π¦π (π§π π₯))))))} β (πΊ β AbelOp β§ π:(β Γ π)βΆπ β§ βπ₯ β π ((1ππ₯) = π₯ β§ βπ¦ β β (βπ§ β π (π¦π(π₯πΊπ§)) = ((π¦ππ₯)πΊ(π¦ππ§)) β§ βπ§ β β (((π¦ + π§)ππ₯) = ((π¦ππ₯)πΊ(π§ππ₯)) β§ ((π¦ Β· π§)ππ₯) = (π¦π(π§ππ₯)))))))) |
52 | 2, 51 | bitrid 282 |
1
β’ ((πΊ β V β§ π β V) β (β¨πΊ, πβ© β CVecOLD β
(πΊ β AbelOp β§
π:(β Γ π)βΆπ β§ βπ₯ β π ((1ππ₯) = π₯ β§ βπ¦ β β (βπ§ β π (π¦π(π₯πΊπ§)) = ((π¦ππ₯)πΊ(π¦ππ§)) β§ βπ§ β β (((π¦ + π§)ππ₯) = ((π¦ππ₯)πΊ(π§ππ₯)) β§ ((π¦ Β· π§)ππ₯) = (π¦π(π§ππ₯)))))))) |