MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isvclem Structured version   Visualization version   GIF version

Theorem isvclem 28357
Description: Lemma for isvcOLD 28359. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Hypothesis
Ref Expression
isvclem.1 𝑋 = ran 𝐺
Assertion
Ref Expression
isvclem ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (⟨𝐺, 𝑆⟩ ∈ CVecOLD ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐺   𝑥,𝑆,𝑦,𝑧   𝑥,𝑋,𝑧
Allowed substitution hint:   𝑋(𝑦)

Proof of Theorem isvclem
Dummy variables 𝑔 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-vc 28339 . . 3 CVecOLD = {⟨𝑔, 𝑠⟩ ∣ (𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))}
21eleq2i 2907 . 2 (⟨𝐺, 𝑆⟩ ∈ CVecOLD ↔ ⟨𝐺, 𝑆⟩ ∈ {⟨𝑔, 𝑠⟩ ∣ (𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))})
3 eleq1 2903 . . . 4 (𝑔 = 𝐺 → (𝑔 ∈ AbelOp ↔ 𝐺 ∈ AbelOp))
4 rneq 5809 . . . . . 6 (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺)
5 isvclem.1 . . . . . 6 𝑋 = ran 𝐺
64, 5syl6eqr 2877 . . . . 5 (𝑔 = 𝐺 → ran 𝑔 = 𝑋)
7 xpeq2 5579 . . . . . . 7 (ran 𝑔 = 𝑋 → (ℂ × ran 𝑔) = (ℂ × 𝑋))
87feq2d 6503 . . . . . 6 (ran 𝑔 = 𝑋 → (𝑠:(ℂ × ran 𝑔)⟶ran 𝑔𝑠:(ℂ × 𝑋)⟶ran 𝑔))
9 feq3 6500 . . . . . 6 (ran 𝑔 = 𝑋 → (𝑠:(ℂ × 𝑋)⟶ran 𝑔𝑠:(ℂ × 𝑋)⟶𝑋))
108, 9bitrd 281 . . . . 5 (ran 𝑔 = 𝑋 → (𝑠:(ℂ × ran 𝑔)⟶ran 𝑔𝑠:(ℂ × 𝑋)⟶𝑋))
116, 10syl 17 . . . 4 (𝑔 = 𝐺 → (𝑠:(ℂ × ran 𝑔)⟶ran 𝑔𝑠:(ℂ × 𝑋)⟶𝑋))
12 oveq 7165 . . . . . . . . . . 11 (𝑔 = 𝐺 → (𝑥𝑔𝑧) = (𝑥𝐺𝑧))
1312oveq2d 7175 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑦𝑠(𝑥𝑔𝑧)) = (𝑦𝑠(𝑥𝐺𝑧)))
14 oveq 7165 . . . . . . . . . 10 (𝑔 = 𝐺 → ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)))
1513, 14eqeq12d 2840 . . . . . . . . 9 (𝑔 = 𝐺 → ((𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ↔ (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧))))
166, 15raleqbidv 3404 . . . . . . . 8 (𝑔 = 𝐺 → (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ↔ ∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧))))
17 oveq 7165 . . . . . . . . . . 11 (𝑔 = 𝐺 → ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)))
1817eqeq2d 2835 . . . . . . . . . 10 (𝑔 = 𝐺 → (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ↔ ((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥))))
1918anbi1d 631 . . . . . . . . 9 (𝑔 = 𝐺 → ((((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))) ↔ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))
2019ralbidv 3200 . . . . . . . 8 (𝑔 = 𝐺 → (∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))) ↔ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))
2116, 20anbi12d 632 . . . . . . 7 (𝑔 = 𝐺 → ((∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))) ↔ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))
2221ralbidv 3200 . . . . . 6 (𝑔 = 𝐺 → (∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))) ↔ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))
2322anbi2d 630 . . . . 5 (𝑔 = 𝐺 → (((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))) ↔ ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))))
246, 23raleqbidv 3404 . . . 4 (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))) ↔ ∀𝑥𝑋 ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))))
253, 11, 243anbi123d 1432 . . 3 (𝑔 = 𝐺 → ((𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))) ↔ (𝐺 ∈ AbelOp ∧ 𝑠:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))))
26 feq1 6498 . . . 4 (𝑠 = 𝑆 → (𝑠:(ℂ × 𝑋)⟶𝑋𝑆:(ℂ × 𝑋)⟶𝑋))
27 oveq 7165 . . . . . . 7 (𝑠 = 𝑆 → (1𝑠𝑥) = (1𝑆𝑥))
2827eqeq1d 2826 . . . . . 6 (𝑠 = 𝑆 → ((1𝑠𝑥) = 𝑥 ↔ (1𝑆𝑥) = 𝑥))
29 oveq 7165 . . . . . . . . . 10 (𝑠 = 𝑆 → (𝑦𝑠(𝑥𝐺𝑧)) = (𝑦𝑆(𝑥𝐺𝑧)))
30 oveq 7165 . . . . . . . . . . 11 (𝑠 = 𝑆 → (𝑦𝑠𝑥) = (𝑦𝑆𝑥))
31 oveq 7165 . . . . . . . . . . 11 (𝑠 = 𝑆 → (𝑦𝑠𝑧) = (𝑦𝑆𝑧))
3230, 31oveq12d 7177 . . . . . . . . . 10 (𝑠 = 𝑆 → ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
3329, 32eqeq12d 2840 . . . . . . . . 9 (𝑠 = 𝑆 → ((𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ↔ (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧))))
3433ralbidv 3200 . . . . . . . 8 (𝑠 = 𝑆 → (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ↔ ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧))))
35 oveq 7165 . . . . . . . . . . 11 (𝑠 = 𝑆 → ((𝑦 + 𝑧)𝑠𝑥) = ((𝑦 + 𝑧)𝑆𝑥))
36 oveq 7165 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (𝑧𝑠𝑥) = (𝑧𝑆𝑥))
3730, 36oveq12d 7177 . . . . . . . . . . 11 (𝑠 = 𝑆 → ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)))
3835, 37eqeq12d 2840 . . . . . . . . . 10 (𝑠 = 𝑆 → (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ↔ ((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥))))
39 oveq 7165 . . . . . . . . . . 11 (𝑠 = 𝑆 → ((𝑦 · 𝑧)𝑠𝑥) = ((𝑦 · 𝑧)𝑆𝑥))
40 oveq 7165 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (𝑦𝑠(𝑧𝑠𝑥)) = (𝑦𝑆(𝑧𝑠𝑥)))
4136oveq2d 7175 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (𝑦𝑆(𝑧𝑠𝑥)) = (𝑦𝑆(𝑧𝑆𝑥)))
4240, 41eqtrd 2859 . . . . . . . . . . 11 (𝑠 = 𝑆 → (𝑦𝑠(𝑧𝑠𝑥)) = (𝑦𝑆(𝑧𝑆𝑥)))
4339, 42eqeq12d 2840 . . . . . . . . . 10 (𝑠 = 𝑆 → (((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)) ↔ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))
4438, 43anbi12d 632 . . . . . . . . 9 (𝑠 = 𝑆 → ((((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))) ↔ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))
4544ralbidv 3200 . . . . . . . 8 (𝑠 = 𝑆 → (∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))) ↔ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))
4634, 45anbi12d 632 . . . . . . 7 (𝑠 = 𝑆 → ((∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))) ↔ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))
4746ralbidv 3200 . . . . . 6 (𝑠 = 𝑆 → (∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))) ↔ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))
4828, 47anbi12d 632 . . . . 5 (𝑠 = 𝑆 → (((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))) ↔ ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
4948ralbidv 3200 . . . 4 (𝑠 = 𝑆 → (∀𝑥𝑋 ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))) ↔ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
5026, 493anbi23d 1435 . . 3 (𝑠 = 𝑆 → ((𝐺 ∈ AbelOp ∧ 𝑠:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))) ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))))
5125, 50opelopabg 5428 . 2 ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (⟨𝐺, 𝑆⟩ ∈ {⟨𝑔, 𝑠⟩ ∣ (𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))} ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))))
522, 51syl5bb 285 1 ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (⟨𝐺, 𝑆⟩ ∈ CVecOLD ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  Vcvv 3497  cop 4576  {copab 5131   × cxp 5556  ran crn 5559  wf 6354  (class class class)co 7159  cc 10538  1c1 10541   + caddc 10543   · cmul 10545  AbelOpcablo 28324  CVecOLDcvc 28338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rab 3150  df-v 3499  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-fv 6366  df-ov 7162  df-vc 28339
This theorem is referenced by:  isvcOLD  28359
  Copyright terms: Public domain W3C validator