MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vscandx Structured version   Visualization version   GIF version

Theorem vscandx 16634
Description: Index value of the df-vsca 16582 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
vscandx ( ·𝑠 ‘ndx) = 6

Proof of Theorem vscandx
StepHypRef Expression
1 df-vsca 16582 . 2 ·𝑠 = Slot 6
2 6nn 11723 . 2 6 ∈ ℕ
31, 2ndxarg 16508 1 ( ·𝑠 ‘ndx) = 6
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  cfv 6343  6c6 11693  ndxcnx 16480   ·𝑠 cvsca 16569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-1cn 10593  ax-addcl 10595
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-ov 7152  df-om 7575  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-ndx 16486  df-slot 16487  df-vsca 16582
This theorem is referenced by:  lmodstr  16636  ipsstr  16643  rmodislmod  19702  sralem  19949  srasca  19953  sravsca  19954  psrvalstr  20143  zlmlem  20664  zlmsca  20668  matvsca  21025  zlmds  31262  zlmtset  31263  algstr  40037
  Copyright terms: Public domain W3C validator