MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttgvscaOLD Structured version   Visualization version   GIF version

Theorem ttgvscaOLD 27246
Description: Obsolete proof of ttgvsca 27245 as of 29-Oct-2024. The scalar product of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
ttgval.n 𝐺 = (toTG‘𝐻)
ttgvsca.1 · = ( ·𝑠𝐻)
Assertion
Ref Expression
ttgvscaOLD · = ( ·𝑠𝐺)

Proof of Theorem ttgvscaOLD
StepHypRef Expression
1 ttgvsca.1 . 2 · = ( ·𝑠𝐻)
2 ttgval.n . . 3 𝐺 = (toTG‘𝐻)
3 df-vsca 16979 . . 3 ·𝑠 = Slot 6
4 6nn 12062 . . 3 6 ∈ ℕ
5 1nn 11984 . . . 4 1 ∈ ℕ
6 6nn0 12254 . . . 4 6 ∈ ℕ0
7 6lt10 12571 . . . 4 6 < 10
85, 6, 6, 7declti 12475 . . 3 6 < 16
92, 3, 4, 8ttglemOLD 27239 . 2 ( ·𝑠𝐻) = ( ·𝑠𝐺)
101, 9eqtri 2766 1 · = ( ·𝑠𝐺)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cfv 6433  1c1 10872  6c6 12032   ·𝑠 cvsca 16966  toTGcttg 27234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-sets 16865  df-slot 16883  df-ndx 16895  df-vsca 16979  df-itv 26796  df-lng 26797  df-ttg 27235
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator