MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vscaid Structured version   Visualization version   GIF version

Theorem vscaid 17231
Description: Utility theorem: index-independent form of scalar product df-vsca 17185. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Assertion
Ref Expression
vscaid ·𝑠 = Slot ( ·𝑠 ‘ndx)

Proof of Theorem vscaid
StepHypRef Expression
1 df-vsca 17185 . 2 ·𝑠 = Slot 6
2 6nn 12225 . 2 6 ∈ ℕ
31, 2ndxid 17115 1 ·𝑠 = Slot ( ·𝑠 ‘ndx)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cfv 6489  6c6 12195  Slot cslot 17099  ndxcnx 17111   ·𝑠 cvsca 17172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-1cn 11075  ax-addcl 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-slot 17100  df-ndx 17112  df-vsca 17185
This theorem is referenced by:  lmodvsca  17240  ipsvsca  17252  ressvsca  17255  phlvsca  17261  prdsvsca  17371  imasvsca  17432  rmodislmod  20872  sravsca  21124  zlmvsca  21467  psrvscafval  21895  opsrvsca  21999  matvsca  22351  tngvsca  24581  ttgvsca  28878  resvvsca  33345  algvsca  43335  mendvscafval  43343  mnringvscad  44382
  Copyright terms: Public domain W3C validator