| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vscaid | Structured version Visualization version GIF version | ||
| Description: Utility theorem: index-independent form of scalar product df-vsca 17173. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| vscaid | ⊢ ·𝑠 = Slot ( ·𝑠 ‘ndx) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-vsca 17173 | . 2 ⊢ ·𝑠 = Slot 6 | |
| 2 | 6nn 12209 | . 2 ⊢ 6 ∈ ℕ | |
| 3 | 1, 2 | ndxid 17103 | 1 ⊢ ·𝑠 = Slot ( ·𝑠 ‘ndx) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ‘cfv 6476 6c6 12179 Slot cslot 17087 ndxcnx 17099 ·𝑠 cvsca 17160 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-1cn 11059 ax-addcl 11061 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-slot 17088 df-ndx 17100 df-vsca 17173 |
| This theorem is referenced by: lmodvsca 17228 ipsvsca 17240 ressvsca 17243 phlvsca 17249 prdsvsca 17359 imasvsca 17419 rmodislmod 20858 sravsca 21110 zlmvsca 21453 psrvscafval 21880 opsrvsca 21983 matvsca 22326 tngvsca 24556 ttgvsca 28853 resvvsca 33293 algvsca 43211 mendvscafval 43219 mnringvscad 44258 |
| Copyright terms: Public domain | W3C validator |