MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vscaid Structured version   Visualization version   GIF version

Theorem vscaid 17329
Description: Utility theorem: index-independent form of scalar product df-vsca 17278. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Assertion
Ref Expression
vscaid ·𝑠 = Slot ( ·𝑠 ‘ndx)

Proof of Theorem vscaid
StepHypRef Expression
1 df-vsca 17278 . 2 ·𝑠 = Slot 6
2 6nn 12347 . 2 6 ∈ ℕ
31, 2ndxid 17194 1 ·𝑠 = Slot ( ·𝑠 ‘ndx)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  cfv 6546  6c6 12317  Slot cslot 17178  ndxcnx 17190   ·𝑠 cvsca 17265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-1cn 11207  ax-addcl 11209
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-ov 7419  df-om 7869  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-nn 12259  df-2 12321  df-3 12322  df-4 12323  df-5 12324  df-6 12325  df-slot 17179  df-ndx 17191  df-vsca 17278
This theorem is referenced by:  lmodvsca  17338  ipsvsca  17350  ressvsca  17353  phlvsca  17359  prdsvsca  17470  imasvsca  17530  rmodislmod  20902  rmodislmodOLD  20903  sravsca  21160  sravscaOLD  21161  zlmvsca  21511  psrvscafval  21953  opsrvsca  22060  matvsca  22405  matvscaOLD  22406  tngvsca  24648  ttgvsca  28808  resvvsca  33216  algvsca  42880  mendvscafval  42888  mnringvscad  43935
  Copyright terms: Public domain W3C validator