Detailed syntax breakdown of Definition df-wlkson
Step | Hyp | Ref
| Expression |
1 | | cwlkson 27499 |
. 2
class
WalksOn |
2 | | vg |
. . 3
setvar 𝑔 |
3 | | cvv 3409 |
. . 3
class
V |
4 | | va |
. . . 4
setvar 𝑎 |
5 | | vb |
. . . 4
setvar 𝑏 |
6 | 2 | cv 1537 |
. . . . 5
class 𝑔 |
7 | | cvtx 26901 |
. . . . 5
class
Vtx |
8 | 6, 7 | cfv 6340 |
. . . 4
class
(Vtx‘𝑔) |
9 | | vf |
. . . . . . . 8
setvar 𝑓 |
10 | 9 | cv 1537 |
. . . . . . 7
class 𝑓 |
11 | | vp |
. . . . . . . 8
setvar 𝑝 |
12 | 11 | cv 1537 |
. . . . . . 7
class 𝑝 |
13 | | cwlks 27498 |
. . . . . . . 8
class
Walks |
14 | 6, 13 | cfv 6340 |
. . . . . . 7
class
(Walks‘𝑔) |
15 | 10, 12, 14 | wbr 5036 |
. . . . . 6
wff 𝑓(Walks‘𝑔)𝑝 |
16 | | cc0 10588 |
. . . . . . . 8
class
0 |
17 | 16, 12 | cfv 6340 |
. . . . . . 7
class (𝑝‘0) |
18 | 4 | cv 1537 |
. . . . . . 7
class 𝑎 |
19 | 17, 18 | wceq 1538 |
. . . . . 6
wff (𝑝‘0) = 𝑎 |
20 | | chash 13753 |
. . . . . . . . 9
class
♯ |
21 | 10, 20 | cfv 6340 |
. . . . . . . 8
class
(♯‘𝑓) |
22 | 21, 12 | cfv 6340 |
. . . . . . 7
class (𝑝‘(♯‘𝑓)) |
23 | 5 | cv 1537 |
. . . . . . 7
class 𝑏 |
24 | 22, 23 | wceq 1538 |
. . . . . 6
wff (𝑝‘(♯‘𝑓)) = 𝑏 |
25 | 15, 19, 24 | w3a 1084 |
. . . . 5
wff (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) |
26 | 25, 9, 11 | copab 5098 |
. . . 4
class
{〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏)} |
27 | 4, 5, 8, 8, 26 | cmpo 7158 |
. . 3
class (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏)}) |
28 | 2, 3, 27 | cmpt 5116 |
. 2
class (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏)})) |
29 | 1, 28 | wceq 1538 |
1
wff WalksOn =
(𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏)})) |