![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iswlkon | Structured version Visualization version GIF version |
Description: Properties of a pair of functions to be a walk between two given vertices (in an undirected graph). (Contributed by Alexander van der Vekens, 2-Nov-2017.) (Revised by AV, 31-Dec-2020.) (Revised by AV, 22-Mar-2021.) |
Ref | Expression |
---|---|
wlkson.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
iswlkon | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍)) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkson.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | wlkson 29689 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵)}) |
3 | fveq1 6906 | . . . . 5 ⊢ (𝑝 = 𝑃 → (𝑝‘0) = (𝑃‘0)) | |
4 | 3 | adantl 481 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑝‘0) = (𝑃‘0)) |
5 | 4 | eqeq1d 2737 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ((𝑝‘0) = 𝐴 ↔ (𝑃‘0) = 𝐴)) |
6 | simpr 484 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → 𝑝 = 𝑃) | |
7 | fveq2 6907 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹)) | |
8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (♯‘𝑓) = (♯‘𝐹)) |
9 | 6, 8 | fveq12d 6914 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑝‘(♯‘𝑓)) = (𝑃‘(♯‘𝐹))) |
10 | 9 | eqeq1d 2737 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ((𝑝‘(♯‘𝑓)) = 𝐵 ↔ (𝑃‘(♯‘𝐹)) = 𝐵)) |
11 | 2, 5, 10 | 2rbropap 5576 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))) |
12 | 11 | 3expb 1119 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍)) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 0cc0 11153 ♯chash 14366 Vtxcvtx 29028 Walkscwlks 29629 WalksOncwlkson 29630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-wlkson 29633 |
This theorem is referenced by: wlkonprop 29691 wlkonwlk 29695 wlkonwlk1l 29696 isspthonpth 29782 2wlkond 29967 umgr2adedgwlkonALT 29977 umgr2wlkon 29980 wpthswwlks2on 29991 0wlkon 30149 1pthond 30173 |
Copyright terms: Public domain | W3C validator |