MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswlkon Structured version   Visualization version   GIF version

Theorem iswlkon 29693
Description: Properties of a pair of functions to be a walk between two given vertices (in an undirected graph). (Contributed by Alexander van der Vekens, 2-Nov-2017.) (Revised by AV, 31-Dec-2020.) (Revised by AV, 22-Mar-2021.)
Hypothesis
Ref Expression
wlkson.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
iswlkon (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑈𝑃𝑍)) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))

Proof of Theorem iswlkon
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wlkson.v . . . 4 𝑉 = (Vtx‘𝐺)
21wlkson 29692 . . 3 ((𝐴𝑉𝐵𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵)})
3 fveq1 6919 . . . . 5 (𝑝 = 𝑃 → (𝑝‘0) = (𝑃‘0))
43adantl 481 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝‘0) = (𝑃‘0))
54eqeq1d 2742 . . 3 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝑝‘0) = 𝐴 ↔ (𝑃‘0) = 𝐴))
6 simpr 484 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → 𝑝 = 𝑃)
7 fveq2 6920 . . . . . 6 (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹))
87adantr 480 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → (♯‘𝑓) = (♯‘𝐹))
96, 8fveq12d 6927 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝‘(♯‘𝑓)) = (𝑃‘(♯‘𝐹)))
109eqeq1d 2742 . . 3 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝑝‘(♯‘𝑓)) = 𝐵 ↔ (𝑃‘(♯‘𝐹)) = 𝐵))
112, 5, 102rbropap 5585 . 2 (((𝐴𝑉𝐵𝑉) ∧ 𝐹𝑈𝑃𝑍) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
12113expb 1120 1 (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑈𝑃𝑍)) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448  0cc0 11184  chash 14379  Vtxcvtx 29031  Walkscwlks 29632  WalksOncwlkson 29633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-wlkson 29636
This theorem is referenced by:  wlkonprop  29694  wlkonwlk  29698  wlkonwlk1l  29699  isspthonpth  29785  2wlkond  29970  umgr2adedgwlkonALT  29980  umgr2wlkon  29983  wpthswwlks2on  29994  0wlkon  30152  1pthond  30176
  Copyright terms: Public domain W3C validator