MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswlkon Structured version   Visualization version   GIF version

Theorem iswlkon 29622
Description: Properties of a pair of functions to be a walk between two given vertices (in an undirected graph). (Contributed by Alexander van der Vekens, 2-Nov-2017.) (Revised by AV, 31-Dec-2020.) (Revised by AV, 22-Mar-2021.)
Hypothesis
Ref Expression
wlkson.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
iswlkon (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑈𝑃𝑍)) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))

Proof of Theorem iswlkon
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wlkson.v . . . 4 𝑉 = (Vtx‘𝐺)
21wlkson 29621 . . 3 ((𝐴𝑉𝐵𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵)})
3 fveq1 6886 . . . . 5 (𝑝 = 𝑃 → (𝑝‘0) = (𝑃‘0))
43adantl 481 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝‘0) = (𝑃‘0))
54eqeq1d 2736 . . 3 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝑝‘0) = 𝐴 ↔ (𝑃‘0) = 𝐴))
6 simpr 484 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → 𝑝 = 𝑃)
7 fveq2 6887 . . . . . 6 (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹))
87adantr 480 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → (♯‘𝑓) = (♯‘𝐹))
96, 8fveq12d 6894 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝‘(♯‘𝑓)) = (𝑃‘(♯‘𝐹)))
109eqeq1d 2736 . . 3 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝑝‘(♯‘𝑓)) = 𝐵 ↔ (𝑃‘(♯‘𝐹)) = 𝐵))
112, 5, 102rbropap 5553 . 2 (((𝐴𝑉𝐵𝑉) ∧ 𝐹𝑈𝑃𝑍) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
12113expb 1120 1 (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑈𝑃𝑍)) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107   class class class wbr 5125  cfv 6542  (class class class)co 7414  0cc0 11138  chash 14352  Vtxcvtx 28960  Walkscwlks 29561  WalksOncwlkson 29562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7997  df-2nd 7998  df-wlkson 29565
This theorem is referenced by:  wlkonprop  29623  wlkonwlk  29627  wlkonwlk1l  29628  isspthonpth  29716  2wlkond  29904  umgr2adedgwlkonALT  29914  umgr2wlkon  29917  wpthswwlks2on  29928  0wlkon  30086  1pthond  30110
  Copyright terms: Public domain W3C validator