MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswlkon Structured version   Visualization version   GIF version

Theorem iswlkon 29349
Description: Properties of a pair of functions to be a walk between two given vertices (in an undirected graph). (Contributed by Alexander van der Vekens, 2-Nov-2017.) (Revised by AV, 31-Dec-2020.) (Revised by AV, 22-Mar-2021.)
Hypothesis
Ref Expression
wlkson.v 𝑉 = (Vtxβ€˜πΊ)
Assertion
Ref Expression
iswlkon (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) ∧ (𝐹 ∈ π‘ˆ ∧ 𝑃 ∈ 𝑍)) β†’ (𝐹(𝐴(WalksOnβ€˜πΊ)𝐡)𝑃 ↔ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡)))

Proof of Theorem iswlkon
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wlkson.v . . . 4 𝑉 = (Vtxβ€˜πΊ)
21wlkson 29348 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ (𝐴(WalksOnβ€˜πΊ)𝐡) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = 𝐴 ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝐡)})
3 fveq1 6890 . . . . 5 (𝑝 = 𝑃 β†’ (π‘β€˜0) = (π‘ƒβ€˜0))
43adantl 481 . . . 4 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ (π‘β€˜0) = (π‘ƒβ€˜0))
54eqeq1d 2733 . . 3 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ ((π‘β€˜0) = 𝐴 ↔ (π‘ƒβ€˜0) = 𝐴))
6 simpr 484 . . . . 5 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ 𝑝 = 𝑃)
7 fveq2 6891 . . . . . 6 (𝑓 = 𝐹 β†’ (β™―β€˜π‘“) = (β™―β€˜πΉ))
87adantr 480 . . . . 5 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ (β™―β€˜π‘“) = (β™―β€˜πΉ))
96, 8fveq12d 6898 . . . 4 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ (π‘β€˜(β™―β€˜π‘“)) = (π‘ƒβ€˜(β™―β€˜πΉ)))
109eqeq1d 2733 . . 3 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ ((π‘β€˜(β™―β€˜π‘“)) = 𝐡 ↔ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡))
112, 5, 102rbropap 5566 . 2 (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) ∧ 𝐹 ∈ π‘ˆ ∧ 𝑃 ∈ 𝑍) β†’ (𝐹(𝐴(WalksOnβ€˜πΊ)𝐡)𝑃 ↔ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡)))
12113expb 1119 1 (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) ∧ (𝐹 ∈ π‘ˆ ∧ 𝑃 ∈ 𝑍)) β†’ (𝐹(𝐴(WalksOnβ€˜πΊ)𝐡)𝑃 ↔ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7412  0cc0 11116  β™―chash 14297  Vtxcvtx 28691  Walkscwlks 29288  WalksOncwlkson 29289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-wlkson 29292
This theorem is referenced by:  wlkonprop  29350  wlkonwlk  29354  wlkonwlk1l  29355  isspthonpth  29441  2wlkond  29626  umgr2adedgwlkonALT  29636  umgr2wlkon  29639  wpthswwlks2on  29650  0wlkon  29808  1pthond  29832
  Copyright terms: Public domain W3C validator