| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iswlkon | Structured version Visualization version GIF version | ||
| Description: Properties of a pair of functions to be a walk between two given vertices (in an undirected graph). (Contributed by Alexander van der Vekens, 2-Nov-2017.) (Revised by AV, 31-Dec-2020.) (Revised by AV, 22-Mar-2021.) |
| Ref | Expression |
|---|---|
| wlkson.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| iswlkon | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍)) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkson.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | wlkson 29641 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵)}) |
| 3 | fveq1 6880 | . . . . 5 ⊢ (𝑝 = 𝑃 → (𝑝‘0) = (𝑃‘0)) | |
| 4 | 3 | adantl 481 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑝‘0) = (𝑃‘0)) |
| 5 | 4 | eqeq1d 2738 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ((𝑝‘0) = 𝐴 ↔ (𝑃‘0) = 𝐴)) |
| 6 | simpr 484 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → 𝑝 = 𝑃) | |
| 7 | fveq2 6881 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹)) | |
| 8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (♯‘𝑓) = (♯‘𝐹)) |
| 9 | 6, 8 | fveq12d 6888 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑝‘(♯‘𝑓)) = (𝑃‘(♯‘𝐹))) |
| 10 | 9 | eqeq1d 2738 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ((𝑝‘(♯‘𝑓)) = 𝐵 ↔ (𝑃‘(♯‘𝐹)) = 𝐵)) |
| 11 | 2, 5, 10 | 2rbropap 5546 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))) |
| 12 | 11 | 3expb 1120 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍)) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 0cc0 11134 ♯chash 14353 Vtxcvtx 28980 Walkscwlks 29581 WalksOncwlkson 29582 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-wlkson 29585 |
| This theorem is referenced by: wlkonprop 29643 wlkonwlk 29647 wlkonwlk1l 29648 isspthonpth 29736 2wlkond 29924 umgr2adedgwlkonALT 29934 umgr2wlkon 29937 wpthswwlks2on 29948 0wlkon 30106 1pthond 30130 |
| Copyright terms: Public domain | W3C validator |