![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iswlkon | Structured version Visualization version GIF version |
Description: Properties of a pair of functions to be a walk between two given vertices (in an undirected graph). (Contributed by Alexander van der Vekens, 2-Nov-2017.) (Revised by AV, 31-Dec-2020.) (Revised by AV, 22-Mar-2021.) |
Ref | Expression |
---|---|
wlkson.v | β’ π = (VtxβπΊ) |
Ref | Expression |
---|---|
iswlkon | β’ (((π΄ β π β§ π΅ β π) β§ (πΉ β π β§ π β π)) β (πΉ(π΄(WalksOnβπΊ)π΅)π β (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkson.v | . . . 4 β’ π = (VtxβπΊ) | |
2 | 1 | wlkson 29348 | . . 3 β’ ((π΄ β π β§ π΅ β π) β (π΄(WalksOnβπΊ)π΅) = {β¨π, πβ© β£ (π(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπ)) = π΅)}) |
3 | fveq1 6890 | . . . . 5 β’ (π = π β (πβ0) = (πβ0)) | |
4 | 3 | adantl 481 | . . . 4 β’ ((π = πΉ β§ π = π) β (πβ0) = (πβ0)) |
5 | 4 | eqeq1d 2733 | . . 3 β’ ((π = πΉ β§ π = π) β ((πβ0) = π΄ β (πβ0) = π΄)) |
6 | simpr 484 | . . . . 5 β’ ((π = πΉ β§ π = π) β π = π) | |
7 | fveq2 6891 | . . . . . 6 β’ (π = πΉ β (β―βπ) = (β―βπΉ)) | |
8 | 7 | adantr 480 | . . . . 5 β’ ((π = πΉ β§ π = π) β (β―βπ) = (β―βπΉ)) |
9 | 6, 8 | fveq12d 6898 | . . . 4 β’ ((π = πΉ β§ π = π) β (πβ(β―βπ)) = (πβ(β―βπΉ))) |
10 | 9 | eqeq1d 2733 | . . 3 β’ ((π = πΉ β§ π = π) β ((πβ(β―βπ)) = π΅ β (πβ(β―βπΉ)) = π΅)) |
11 | 2, 5, 10 | 2rbropap 5566 | . 2 β’ (((π΄ β π β§ π΅ β π) β§ πΉ β π β§ π β π) β (πΉ(π΄(WalksOnβπΊ)π΅)π β (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅))) |
12 | 11 | 3expb 1119 | 1 β’ (((π΄ β π β§ π΅ β π) β§ (πΉ β π β§ π β π)) β (πΉ(π΄(WalksOnβπΊ)π΅)π β (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 class class class wbr 5148 βcfv 6543 (class class class)co 7412 0cc0 11116 β―chash 14297 Vtxcvtx 28691 Walkscwlks 29288 WalksOncwlkson 29289 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-wlkson 29292 |
This theorem is referenced by: wlkonprop 29350 wlkonwlk 29354 wlkonwlk1l 29355 isspthonpth 29441 2wlkond 29626 umgr2adedgwlkonALT 29636 umgr2wlkon 29639 wpthswwlks2on 29650 0wlkon 29808 1pthond 29832 |
Copyright terms: Public domain | W3C validator |