Home | Metamath
Proof Explorer Theorem List (p. 295 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29280) |
Hilbert Space Explorer
(29281-30803) |
Users' Mathboxes
(30804-46521) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | hvpncan 29401 | Addition/subtraction cancellation law for vectors in Hilbert space. (Contributed by NM, 7-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 +ℎ 𝐵) −ℎ 𝐵) = 𝐴) | ||
Theorem | hvpncan2 29402 | Addition/subtraction cancellation law for vectors in Hilbert space. (Contributed by NM, 7-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 +ℎ 𝐵) −ℎ 𝐴) = 𝐵) | ||
Theorem | hvaddsubass 29403 | Associativity of sum and difference of Hilbert space vectors. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) −ℎ 𝐶) = (𝐴 +ℎ (𝐵 −ℎ 𝐶))) | ||
Theorem | hvpncan3 29404 | Subtraction and addition of equal Hilbert space vectors. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ (𝐵 −ℎ 𝐴)) = 𝐵) | ||
Theorem | hvmulcom 29405 | Scalar multiplication commutative law. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) = (𝐵 ·ℎ (𝐴 ·ℎ 𝐶))) | ||
Theorem | hvsubass 29406 | Hilbert vector space associative law for subtraction. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) −ℎ 𝐶) = (𝐴 −ℎ (𝐵 +ℎ 𝐶))) | ||
Theorem | hvsub32 29407 | Hilbert vector space commutative/associative law. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) −ℎ 𝐶) = ((𝐴 −ℎ 𝐶) −ℎ 𝐵)) | ||
Theorem | hvmulassi 29408 | Scalar multiplication associative law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) | ||
Theorem | hvmulcomi 29409 | Scalar multiplication commutative law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) = (𝐵 ·ℎ (𝐴 ·ℎ 𝐶)) | ||
Theorem | hvmul2negi 29410 | Double negative in scalar multiplication. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ (-𝐴 ·ℎ (-𝐵 ·ℎ 𝐶)) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) | ||
Theorem | hvsubdistr1 29411 | Scalar multiplication distributive law for subtraction. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶))) | ||
Theorem | hvsubdistr2 29412 | Scalar multiplication distributive law for subtraction. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 − 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶))) | ||
Theorem | hvdistr1i 29413 | Scalar multiplication distributive law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ (𝐴 ·ℎ (𝐵 +ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ 𝐶)) | ||
Theorem | hvsubdistr1i 29414 | Scalar multiplication distributive law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ (𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶)) | ||
Theorem | hvassi 29415 | Hilbert vector space associative law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = (𝐴 +ℎ (𝐵 +ℎ 𝐶)) | ||
Theorem | hvadd32i 29416 | Hilbert vector space commutative/associative law. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = ((𝐴 +ℎ 𝐶) +ℎ 𝐵) | ||
Theorem | hvsubassi 29417 | Hilbert vector space associative law for subtraction. (Contributed by NM, 7-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ ((𝐴 −ℎ 𝐵) −ℎ 𝐶) = (𝐴 −ℎ (𝐵 +ℎ 𝐶)) | ||
Theorem | hvsub32i 29418 | Hilbert vector space commutative/associative law. (Contributed by NM, 7-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ ((𝐴 −ℎ 𝐵) −ℎ 𝐶) = ((𝐴 −ℎ 𝐶) −ℎ 𝐵) | ||
Theorem | hvadd12i 29419 | Hilbert vector space commutative/associative law. (Contributed by NM, 11-Sep-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ (𝐴 +ℎ (𝐵 +ℎ 𝐶)) = (𝐵 +ℎ (𝐴 +ℎ 𝐶)) | ||
Theorem | hvadd4i 29420 | Hilbert vector space addition law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ & ⊢ 𝐷 ∈ ℋ ⇒ ⊢ ((𝐴 +ℎ 𝐵) +ℎ (𝐶 +ℎ 𝐷)) = ((𝐴 +ℎ 𝐶) +ℎ (𝐵 +ℎ 𝐷)) | ||
Theorem | hvsubsub4i 29421 | Hilbert vector space addition law. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ & ⊢ 𝐷 ∈ ℋ ⇒ ⊢ ((𝐴 −ℎ 𝐵) −ℎ (𝐶 −ℎ 𝐷)) = ((𝐴 −ℎ 𝐶) −ℎ (𝐵 −ℎ 𝐷)) | ||
Theorem | hvsubsub4 29422 | Hilbert vector space addition/subtraction law. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 −ℎ 𝐵) −ℎ (𝐶 −ℎ 𝐷)) = ((𝐴 −ℎ 𝐶) −ℎ (𝐵 −ℎ 𝐷))) | ||
Theorem | hv2times 29423 | Two times a vector. (Contributed by NM, 22-Jun-2006.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (2 ·ℎ 𝐴) = (𝐴 +ℎ 𝐴)) | ||
Theorem | hvnegdii 29424 | Distribution of negative over subtraction. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (-1 ·ℎ (𝐴 −ℎ 𝐵)) = (𝐵 −ℎ 𝐴) | ||
Theorem | hvsubeq0i 29425 | If the difference between two vectors is zero, they are equal. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ ((𝐴 −ℎ 𝐵) = 0ℎ ↔ 𝐴 = 𝐵) | ||
Theorem | hvsubcan2i 29426 | Vector cancellation law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ ((𝐴 +ℎ 𝐵) +ℎ (𝐴 −ℎ 𝐵)) = (2 ·ℎ 𝐴) | ||
Theorem | hvaddcani 29427 | Cancellation law for vector addition. (Contributed by NM, 11-Sep-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ ((𝐴 +ℎ 𝐵) = (𝐴 +ℎ 𝐶) ↔ 𝐵 = 𝐶) | ||
Theorem | hvsubaddi 29428 | Relationship between vector subtraction and addition. (Contributed by NM, 11-Sep-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = 𝐴) | ||
Theorem | hvnegdi 29429 | Distribution of negative over subtraction. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (-1 ·ℎ (𝐴 −ℎ 𝐵)) = (𝐵 −ℎ 𝐴)) | ||
Theorem | hvsubeq0 29430 | If the difference between two vectors is zero, they are equal. (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 −ℎ 𝐵) = 0ℎ ↔ 𝐴 = 𝐵)) | ||
Theorem | hvaddeq0 29431 | If the sum of two vectors is zero, one is the negative of the other. (Contributed by NM, 10-Jun-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 +ℎ 𝐵) = 0ℎ ↔ 𝐴 = (-1 ·ℎ 𝐵))) | ||
Theorem | hvaddcan 29432 | Cancellation law for vector addition. (Contributed by NM, 18-May-2005.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) = (𝐴 +ℎ 𝐶) ↔ 𝐵 = 𝐶)) | ||
Theorem | hvaddcan2 29433 | Cancellation law for vector addition. (Contributed by NM, 18-May-2005.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐶) = (𝐵 +ℎ 𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | hvmulcan 29434 | Cancellation law for scalar multiplication. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) = (𝐴 ·ℎ 𝐶) ↔ 𝐵 = 𝐶)) | ||
Theorem | hvmulcan2 29435 | Cancellation law for scalar multiplication. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → ((𝐴 ·ℎ 𝐶) = (𝐵 ·ℎ 𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | hvsubcan 29436 | Cancellation law for vector addition. (Contributed by NM, 18-May-2005.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) = (𝐴 −ℎ 𝐶) ↔ 𝐵 = 𝐶)) | ||
Theorem | hvsubcan2 29437 | Cancellation law for vector addition. (Contributed by NM, 18-May-2005.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐶) = (𝐵 −ℎ 𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | hvsub0 29438 | Subtraction of a zero vector. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (𝐴 −ℎ 0ℎ) = 𝐴) | ||
Theorem | hvsubadd 29439 | Relationship between vector subtraction and addition. (Contributed by NM, 30-Oct-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = 𝐴)) | ||
Theorem | hvaddsub4 29440 | Hilbert vector space addition/subtraction law. (Contributed by NM, 18-May-2005.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 +ℎ 𝐵) = (𝐶 +ℎ 𝐷) ↔ (𝐴 −ℎ 𝐶) = (𝐷 −ℎ 𝐵))) | ||
Axiom | ax-hfi 29441 | Inner product maps pairs from ℋ to ℂ. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
⊢ ·ih :( ℋ × ℋ)⟶ℂ | ||
Theorem | hicl 29442 | Closure of inner product. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ) | ||
Theorem | hicli 29443 | Closure inference for inner product. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 ·ih 𝐵) ∈ ℂ | ||
Axiom | ax-his1 29444 | Conjugate law for inner product. Postulate (S1) of [Beran] p. 95. Note that ∗‘𝑥 is the complex conjugate cjval 14813 of 𝑥. In the literature, the inner product of 𝐴 and 𝐵 is usually written 〈𝐴, 𝐵〉, but our operation notation co 7275 allows us to use existing theorems about operations and also avoids a clash with the definition of an ordered pair df-op 4568. Physicists use 〈𝐵 ∣ 𝐴〉, called Dirac bra-ket notation, to represent this operation; see comments in df-bra 30212. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴))) | ||
Axiom | ax-his2 29445 | Distributive law for inner product. Postulate (S2) of [Beran] p. 95. (Contributed by NM, 31-Jul-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐶))) | ||
Axiom | ax-his3 29446 | Associative law for inner product. Postulate (S3) of [Beran] p. 95. Warning: Mathematics textbooks usually use our version of the axiom. Physics textbooks, on the other hand, usually replace the left-hand side with (𝐵 ·ih (𝐴 ·ℎ 𝐶)) (e.g., Equation 1.21b of [Hughes] p. 44; Definition (iii) of [ReedSimon] p. 36). See the comments in df-bra 30212 for why the physics definition is swapped. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))) | ||
Axiom | ax-his4 29447 | Identity law for inner product. Postulate (S4) of [Beran] p. 95. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → 0 < (𝐴 ·ih 𝐴)) | ||
Theorem | his5 29448 | Associative law for inner product. Lemma 3.1(S5) of [Beran] p. 95. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ih (𝐴 ·ℎ 𝐶)) = ((∗‘𝐴) · (𝐵 ·ih 𝐶))) | ||
Theorem | his52 29449 | Associative law for inner product. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ih ((∗‘𝐴) ·ℎ 𝐶)) = (𝐴 · (𝐵 ·ih 𝐶))) | ||
Theorem | his35 29450 | Move scalar multiplication to outside of inner product. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ·ℎ 𝐶) ·ih (𝐵 ·ℎ 𝐷)) = ((𝐴 · (∗‘𝐵)) · (𝐶 ·ih 𝐷))) | ||
Theorem | his35i 29451 | Move scalar multiplication to outside of inner product. (Contributed by NM, 1-Jul-2005.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℋ & ⊢ 𝐷 ∈ ℋ ⇒ ⊢ ((𝐴 ·ℎ 𝐶) ·ih (𝐵 ·ℎ 𝐷)) = ((𝐴 · (∗‘𝐵)) · (𝐶 ·ih 𝐷)) | ||
Theorem | his7 29452 | Distributive law for inner product. Lemma 3.1(S7) of [Beran] p. 95. (Contributed by NM, 31-Jul-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih (𝐵 +ℎ 𝐶)) = ((𝐴 ·ih 𝐵) + (𝐴 ·ih 𝐶))) | ||
Theorem | hiassdi 29453 | Distributive/associative law for inner product, useful for linearity proofs. (Contributed by NM, 10-May-2005.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 ·ℎ 𝐵) +ℎ 𝐶) ·ih 𝐷) = ((𝐴 · (𝐵 ·ih 𝐷)) + (𝐶 ·ih 𝐷))) | ||
Theorem | his2sub 29454 | Distributive law for inner product of vector subtraction. (Contributed by NM, 16-Nov-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) ·ih 𝐶) = ((𝐴 ·ih 𝐶) − (𝐵 ·ih 𝐶))) | ||
Theorem | his2sub2 29455 | Distributive law for inner product of vector subtraction. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih (𝐵 −ℎ 𝐶)) = ((𝐴 ·ih 𝐵) − (𝐴 ·ih 𝐶))) | ||
Theorem | hire 29456 | A necessary and sufficient condition for an inner product to be real. (Contributed by NM, 2-Jul-2005.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) ∈ ℝ ↔ (𝐴 ·ih 𝐵) = (𝐵 ·ih 𝐴))) | ||
Theorem | hiidrcl 29457 | Real closure of inner product with self. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (𝐴 ·ih 𝐴) ∈ ℝ) | ||
Theorem | hi01 29458 | Inner product with the 0 vector. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (0ℎ ·ih 𝐴) = 0) | ||
Theorem | hi02 29459 | Inner product with the 0 vector. (Contributed by NM, 13-Oct-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (𝐴 ·ih 0ℎ) = 0) | ||
Theorem | hiidge0 29460 | Inner product with self is not negative. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → 0 ≤ (𝐴 ·ih 𝐴)) | ||
Theorem | his6 29461 | Zero inner product with self means vector is zero. Lemma 3.1(S6) of [Beran] p. 95. (Contributed by NM, 27-Jul-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → ((𝐴 ·ih 𝐴) = 0 ↔ 𝐴 = 0ℎ)) | ||
Theorem | his1i 29462 | Conjugate law for inner product. Postulate (S1) of [Beran] p. 95. (Contributed by NM, 15-May-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴)) | ||
Theorem | abshicom 29463 | Commuted inner products have the same absolute values. (Contributed by NM, 26-May-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (abs‘(𝐴 ·ih 𝐵)) = (abs‘(𝐵 ·ih 𝐴))) | ||
Theorem | hial0 29464* | A vector whose inner product is always zero is zero. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = 0 ↔ 𝐴 = 0ℎ)) | ||
Theorem | hial02 29465* | A vector whose inner product is always zero is zero. (Contributed by NM, 28-Jan-2006.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝑥 ·ih 𝐴) = 0 ↔ 𝐴 = 0ℎ)) | ||
Theorem | hisubcomi 29466 | Two vector subtractions simultaneously commute in an inner product. (Contributed by NM, 1-Jul-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ & ⊢ 𝐷 ∈ ℋ ⇒ ⊢ ((𝐴 −ℎ 𝐵) ·ih (𝐶 −ℎ 𝐷)) = ((𝐵 −ℎ 𝐴) ·ih (𝐷 −ℎ 𝐶)) | ||
Theorem | hi2eq 29467 | Lemma used to prove equality of vectors. (Contributed by NM, 16-Nov-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih (𝐴 −ℎ 𝐵)) = (𝐵 ·ih (𝐴 −ℎ 𝐵)) ↔ 𝐴 = 𝐵)) | ||
Theorem | hial2eq 29468* | Two vectors whose inner product is always equal are equal. (Contributed by NM, 16-Nov-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = (𝐵 ·ih 𝑥) ↔ 𝐴 = 𝐵)) | ||
Theorem | hial2eq2 29469* | Two vectors whose inner product is always equal are equal. (Contributed by NM, 28-Jan-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih 𝐴) = (𝑥 ·ih 𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | orthcom 29470 | Orthogonality commutes. (Contributed by NM, 10-Oct-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 ↔ (𝐵 ·ih 𝐴) = 0)) | ||
Theorem | normlem0 29471 | Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 7-Oct-1999.) (New usage is discouraged.) |
⊢ 𝑆 ∈ ℂ & ⊢ 𝐹 ∈ ℋ & ⊢ 𝐺 ∈ ℋ ⇒ ⊢ ((𝐹 −ℎ (𝑆 ·ℎ 𝐺)) ·ih (𝐹 −ℎ (𝑆 ·ℎ 𝐺))) = (((𝐹 ·ih 𝐹) + (-(∗‘𝑆) · (𝐹 ·ih 𝐺))) + ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺)))) | ||
Theorem | normlem1 29472 | Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 22-Aug-1999.) (New usage is discouraged.) |
⊢ 𝑆 ∈ ℂ & ⊢ 𝐹 ∈ ℋ & ⊢ 𝐺 ∈ ℋ & ⊢ 𝑅 ∈ ℝ & ⊢ (abs‘𝑆) = 1 ⇒ ⊢ ((𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺)) ·ih (𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺))) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))) | ||
Theorem | normlem2 29473 | Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 27-Jul-1999.) (New usage is discouraged.) |
⊢ 𝑆 ∈ ℂ & ⊢ 𝐹 ∈ ℋ & ⊢ 𝐺 ∈ ℋ & ⊢ 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ⇒ ⊢ 𝐵 ∈ ℝ | ||
Theorem | normlem3 29474 | Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 21-Aug-1999.) (New usage is discouraged.) |
⊢ 𝑆 ∈ ℂ & ⊢ 𝐹 ∈ ℋ & ⊢ 𝐺 ∈ ℋ & ⊢ 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) & ⊢ 𝐴 = (𝐺 ·ih 𝐺) & ⊢ 𝐶 = (𝐹 ·ih 𝐹) & ⊢ 𝑅 ∈ ℝ ⇒ ⊢ (((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) + 𝐶) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))) | ||
Theorem | normlem4 29475 | Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.) |
⊢ 𝑆 ∈ ℂ & ⊢ 𝐹 ∈ ℋ & ⊢ 𝐺 ∈ ℋ & ⊢ 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) & ⊢ 𝐴 = (𝐺 ·ih 𝐺) & ⊢ 𝐶 = (𝐹 ·ih 𝐹) & ⊢ 𝑅 ∈ ℝ & ⊢ (abs‘𝑆) = 1 ⇒ ⊢ ((𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺)) ·ih (𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺))) = (((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) + 𝐶) | ||
Theorem | normlem5 29476 | Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 10-Aug-1999.) (New usage is discouraged.) |
⊢ 𝑆 ∈ ℂ & ⊢ 𝐹 ∈ ℋ & ⊢ 𝐺 ∈ ℋ & ⊢ 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) & ⊢ 𝐴 = (𝐺 ·ih 𝐺) & ⊢ 𝐶 = (𝐹 ·ih 𝐹) & ⊢ 𝑅 ∈ ℝ & ⊢ (abs‘𝑆) = 1 ⇒ ⊢ 0 ≤ (((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) + 𝐶) | ||
Theorem | normlem6 29477 | Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 2-Aug-1999.) (Revised by Mario Carneiro, 4-Jun-2014.) (New usage is discouraged.) |
⊢ 𝑆 ∈ ℂ & ⊢ 𝐹 ∈ ℋ & ⊢ 𝐺 ∈ ℋ & ⊢ 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) & ⊢ 𝐴 = (𝐺 ·ih 𝐺) & ⊢ 𝐶 = (𝐹 ·ih 𝐹) & ⊢ (abs‘𝑆) = 1 ⇒ ⊢ (abs‘𝐵) ≤ (2 · ((√‘𝐴) · (√‘𝐶))) | ||
Theorem | normlem7 29478 | Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 11-Aug-1999.) (New usage is discouraged.) |
⊢ 𝑆 ∈ ℂ & ⊢ 𝐹 ∈ ℋ & ⊢ 𝐺 ∈ ℋ & ⊢ (abs‘𝑆) = 1 ⇒ ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹)))) | ||
Theorem | normlem8 29479 | Lemma used to derive properties of norm. (Contributed by NM, 30-Jun-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ & ⊢ 𝐷 ∈ ℋ ⇒ ⊢ ((𝐴 +ℎ 𝐵) ·ih (𝐶 +ℎ 𝐷)) = (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) + ((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶))) | ||
Theorem | normlem9 29480 | Lemma used to derive properties of norm. (Contributed by NM, 30-Jun-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ & ⊢ 𝐷 ∈ ℋ ⇒ ⊢ ((𝐴 −ℎ 𝐵) ·ih (𝐶 −ℎ 𝐷)) = (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) − ((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶))) | ||
Theorem | normlem7tALT 29481 | Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ ((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1) → (((∗‘𝑆) · (𝐴 ·ih 𝐵)) + (𝑆 · (𝐵 ·ih 𝐴))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴))))) | ||
Theorem | bcseqi 29482 | Equality case of Bunjakovaskij-Cauchy-Schwarz inequality. Specifically, in the equality case the two vectors are collinear. Compare bcsiHIL 29542. (Contributed by NM, 16-Jul-2001.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) ↔ ((𝐵 ·ih 𝐵) ·ℎ 𝐴) = ((𝐴 ·ih 𝐵) ·ℎ 𝐵)) | ||
Theorem | normlem9at 29483 | Lemma used to derive properties of norm. Part of Remark 3.4(B) of [Beran] p. 98. (Contributed by NM, 10-May-2005.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵)) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) − ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))) | ||
Theorem | dfhnorm2 29484 | Alternate definition of the norm of a vector of Hilbert space. Definition of norm in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ normℎ = (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥))) | ||
Theorem | normf 29485 | The norm function maps from Hilbert space to reals. (Contributed by NM, 6-Sep-2007.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ normℎ: ℋ⟶ℝ | ||
Theorem | normval 29486 | The value of the norm of a vector in Hilbert space. Definition of norm in [Beran] p. 96. In the literature, the norm of 𝐴 is usually written as "|| 𝐴 ||", but we use function value notation to take advantage of our existing theorems about functions. (Contributed by NM, 29-May-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (normℎ‘𝐴) = (√‘(𝐴 ·ih 𝐴))) | ||
Theorem | normcl 29487 | Real closure of the norm of a vector. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (normℎ‘𝐴) ∈ ℝ) | ||
Theorem | normge0 29488 | The norm of a vector is nonnegative. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → 0 ≤ (normℎ‘𝐴)) | ||
Theorem | normgt0 29489 | The norm of nonzero vector is positive. (Contributed by NM, 10-Apr-2006.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (𝐴 ≠ 0ℎ ↔ 0 < (normℎ‘𝐴))) | ||
Theorem | norm0 29490 | The norm of a zero vector. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
⊢ (normℎ‘0ℎ) = 0 | ||
Theorem | norm-i 29491 | Theorem 3.3(i) of [Beran] p. 97. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → ((normℎ‘𝐴) = 0 ↔ 𝐴 = 0ℎ)) | ||
Theorem | normne0 29492 | A norm is nonzero iff its argument is a nonzero vector. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → ((normℎ‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0ℎ)) | ||
Theorem | normcli 29493 | Real closure of the norm of a vector. (Contributed by NM, 30-Sep-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ ⇒ ⊢ (normℎ‘𝐴) ∈ ℝ | ||
Theorem | normsqi 29494 | The square of a norm. (Contributed by NM, 21-Aug-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ ⇒ ⊢ ((normℎ‘𝐴)↑2) = (𝐴 ·ih 𝐴) | ||
Theorem | norm-i-i 29495 | Theorem 3.3(i) of [Beran] p. 97. (Contributed by NM, 5-Sep-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ ⇒ ⊢ ((normℎ‘𝐴) = 0 ↔ 𝐴 = 0ℎ) | ||
Theorem | normsq 29496 | The square of a norm. (Contributed by NM, 12-May-2005.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → ((normℎ‘𝐴)↑2) = (𝐴 ·ih 𝐴)) | ||
Theorem | normsub0i 29497 | Two vectors are equal iff the norm of their difference is zero. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ ((normℎ‘(𝐴 −ℎ 𝐵)) = 0 ↔ 𝐴 = 𝐵) | ||
Theorem | normsub0 29498 | Two vectors are equal iff the norm of their difference is zero. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((normℎ‘(𝐴 −ℎ 𝐵)) = 0 ↔ 𝐴 = 𝐵)) | ||
Theorem | norm-ii-i 29499 | Triangle inequality for norms. Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 11-Aug-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (normℎ‘(𝐴 +ℎ 𝐵)) ≤ ((normℎ‘𝐴) + (normℎ‘𝐵)) | ||
Theorem | norm-ii 29500 | Triangle inequality for norms. Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (normℎ‘(𝐴 +ℎ 𝐵)) ≤ ((normℎ‘𝐴) + (normℎ‘𝐵))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |