| Metamath
Proof Explorer Theorem List (p. 295 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | cusgrop 29401 | A complete simple graph represented by an ordered pair. (Contributed by AV, 10-Nov-2020.) |
| ⊢ (𝐺 ∈ ComplUSGraph → 〈(Vtx‘𝐺), (iEdg‘𝐺)〉 ∈ ComplUSGraph) | ||
| Theorem | cusgrexilem1 29402* | Lemma 1 for cusgrexi 29406. (Contributed by Alexander van der Vekens, 12-Jan-2018.) |
| ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⇒ ⊢ (𝑉 ∈ 𝑊 → ( I ↾ 𝑃) ∈ V) | ||
| Theorem | usgrexilem 29403* | Lemma for usgrexi 29404. (Contributed by AV, 12-Jan-2018.) (Revised by AV, 10-Nov-2021.) |
| ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⇒ ⊢ (𝑉 ∈ 𝑊 → ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) | ||
| Theorem | usgrexi 29404* | An arbitrary set regarded as vertices together with the set of pairs of elements of this set regarded as edges is a simple graph. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 5-Nov-2020.) (Proof shortened by AV, 10-Nov-2021.) |
| ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⇒ ⊢ (𝑉 ∈ 𝑊 → 〈𝑉, ( I ↾ 𝑃)〉 ∈ USGraph) | ||
| Theorem | cusgrexilem2 29405* | Lemma 2 for cusgrexi 29406. (Contributed by AV, 12-Jan-2018.) (Revised by AV, 10-Nov-2021.) |
| ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⇒ ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒) | ||
| Theorem | cusgrexi 29406* | An arbitrary set 𝑉 regarded as set of vertices together with the set of pairs of elements of this set regarded as edges is a complete simple graph. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 5-Nov-2020.) (Proof shortened by AV, 14-Feb-2022.) |
| ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⇒ ⊢ (𝑉 ∈ 𝑊 → 〈𝑉, ( I ↾ 𝑃)〉 ∈ ComplUSGraph) | ||
| Theorem | cusgrexg 29407* | For each set there is a set of edges so that the set together with these edges is a complete simple graph. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 5-Nov-2020.) |
| ⊢ (𝑉 ∈ 𝑊 → ∃𝑒〈𝑉, 𝑒〉 ∈ ComplUSGraph) | ||
| Theorem | structtousgr 29408* | Any (extensible) structure with a base set can be made a simple graph with the set of pairs of elements of the base set regarded as edges. (Contributed by AV, 10-Nov-2021.) (Revised by AV, 17-Nov-2021.) |
| ⊢ 𝑃 = {𝑥 ∈ 𝒫 (Base‘𝑆) ∣ (♯‘𝑥) = 2} & ⊢ (𝜑 → 𝑆 Struct 𝑋) & ⊢ 𝐺 = (𝑆 sSet 〈(.ef‘ndx), ( I ↾ 𝑃)〉) & ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝑆) ⇒ ⊢ (𝜑 → 𝐺 ∈ USGraph) | ||
| Theorem | structtocusgr 29409* | Any (extensible) structure with a base set can be made a complete simple graph with the set of pairs of elements of the base set regarded as edges. (Contributed by AV, 10-Nov-2021.) (Revised by AV, 17-Nov-2021.) (Proof shortened by AV, 14-Feb-2022.) |
| ⊢ 𝑃 = {𝑥 ∈ 𝒫 (Base‘𝑆) ∣ (♯‘𝑥) = 2} & ⊢ (𝜑 → 𝑆 Struct 𝑋) & ⊢ 𝐺 = (𝑆 sSet 〈(.ef‘ndx), ( I ↾ 𝑃)〉) & ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝑆) ⇒ ⊢ (𝜑 → 𝐺 ∈ ComplUSGraph) | ||
| Theorem | cffldtocusgr 29410* | The field of complex numbers can be made a complete simple graph with the set of pairs of complex numbers regarded as edges. This theorem demonstrates the capabilities of the current definitions for graphs applied to extensible structures. (Contributed by AV, 14-Nov-2021.) (Proof shortened by AV, 17-Nov-2021.) Revise df-cnfld 21280. (Revised by GG, 31-Mar-2025.) |
| ⊢ 𝑃 = {𝑥 ∈ 𝒫 ℂ ∣ (♯‘𝑥) = 2} & ⊢ 𝐺 = (ℂfld sSet 〈(.ef‘ndx), ( I ↾ 𝑃)〉) ⇒ ⊢ 𝐺 ∈ ComplUSGraph | ||
| Theorem | cffldtocusgrOLD 29411* | Obsolete version of cffldtocusgr 29410 as of 27-Apr-2025. (Contributed by AV, 14-Nov-2021.) (Proof shortened by AV, 17-Nov-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑃 = {𝑥 ∈ 𝒫 ℂ ∣ (♯‘𝑥) = 2} & ⊢ 𝐺 = (ℂfld sSet 〈(.ef‘ndx), ( I ↾ 𝑃)〉) ⇒ ⊢ 𝐺 ∈ ComplUSGraph | ||
| Theorem | cusgrres 29412* | Restricting a complete simple graph. (Contributed by Alexander van der Vekens, 2-Jan-2018.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} & ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 ⇒ ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ ComplUSGraph) | ||
| Theorem | cusgrsizeindb0 29413 | Base case of the induction in cusgrsize 29418. The size of a complete simple graph with 0 vertices, actually of every null graph, is 0=((0-1)*0)/2. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 7-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 0) → (♯‘𝐸) = ((♯‘𝑉)C2)) | ||
| Theorem | cusgrsizeindb1 29414 | Base case of the induction in cusgrsize 29418. The size of a (complete) simple graph with 1 vertex is 0=((1-1)*1)/2. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 7-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 1) → (♯‘𝐸) = ((♯‘𝑉)C2)) | ||
| Theorem | cusgrsizeindslem 29415* | Lemma for cusgrsizeinds 29416. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) = ((♯‘𝑉) − 1)) | ||
| Theorem | cusgrsizeinds 29416* | Part 1 of induction step in cusgrsize 29418. The size of a complete simple graph with 𝑛 vertices is (𝑛 − 1) plus the size of the complete graph reduced by one vertex. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} ⇒ ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹))) | ||
| Theorem | cusgrsize2inds 29417* | Induction step in cusgrsize 29418. If the size of the complete graph with 𝑛 vertices reduced by one vertex is "(𝑛 − 1) choose 2", the size of the complete graph with 𝑛 vertices is "𝑛 choose 2". (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} ⇒ ⊢ (𝑌 ∈ ℕ0 → ((𝐺 ∈ ComplUSGraph ∧ (♯‘𝑉) = 𝑌 ∧ 𝑁 ∈ 𝑉) → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))) | ||
| Theorem | cusgrsize 29418 | The size of a finite complete simple graph with 𝑛 vertices (𝑛 ∈ ℕ0) is (𝑛C2) ("𝑛 choose 2") resp. (((𝑛 − 1)∗𝑛) / 2), see definition in section I.1 of [Bollobas] p. 3 . (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 10-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (♯‘𝐸) = ((♯‘𝑉)C2)) | ||
| Theorem | cusgrfilem1 29419* | Lemma 1 for cusgrfi 29422. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} ⇒ ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑃 ⊆ (Edg‘𝐺)) | ||
| Theorem | cusgrfilem2 29420* | Lemma 2 for cusgrfi 29422. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} & ⊢ 𝐹 = (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) ⇒ ⊢ (𝑁 ∈ 𝑉 → 𝐹:(𝑉 ∖ {𝑁})–1-1-onto→𝑃) | ||
| Theorem | cusgrfilem3 29421* | Lemma 3 for cusgrfi 29422. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} & ⊢ 𝐹 = (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝑉 ∈ Fin ↔ 𝑃 ∈ Fin)) | ||
| Theorem | cusgrfi 29422 | If the size of a complete simple graph is finite, then its order is also finite. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝐸 ∈ Fin) → 𝑉 ∈ Fin) | ||
| Theorem | usgredgsscusgredg 29423 | A simple graph is a subgraph of a complete simple graph. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 13-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐻) & ⊢ 𝐹 = (Edg‘𝐻) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → 𝐸 ⊆ 𝐹) | ||
| Theorem | usgrsscusgr 29424* | A simple graph is a subgraph of a complete simple graph. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 13-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐻) & ⊢ 𝐹 = (Edg‘𝐻) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → ∀𝑒 ∈ 𝐸 ∃𝑓 ∈ 𝐹 𝑒 = 𝑓) | ||
| Theorem | sizusglecusglem1 29425 | Lemma 1 for sizusglecusg 29427. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 13-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐻) & ⊢ 𝐹 = (Edg‘𝐻) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → ( I ↾ 𝐸):𝐸–1-1→𝐹) | ||
| Theorem | sizusglecusglem2 29426 | Lemma 2 for sizusglecusg 29427. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 13-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐻) & ⊢ 𝐹 = (Edg‘𝐻) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ∧ 𝐹 ∈ Fin) → 𝐸 ∈ Fin) | ||
| Theorem | sizusglecusg 29427 | The size of a simple graph with 𝑛 vertices is at most the size of a complete simple graph with 𝑛 vertices (𝑛 may be infinite). (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 13-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐻) & ⊢ 𝐹 = (Edg‘𝐻) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹)) | ||
| Theorem | fusgrmaxsize 29428 | The maximum size of a finite simple graph with 𝑛 vertices is (((𝑛 − 1)∗𝑛) / 2). See statement in section I.1 of [Bollobas] p. 3 . (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 14-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ FinUSGraph → (♯‘𝐸) ≤ ((♯‘𝑉)C2)) | ||
| Syntax | cvtxdg 29429 | Extend class notation with the vertex degree function. |
| class VtxDeg | ||
| Definition | df-vtxdg 29430* | Define the vertex degree function for a graph. To be appropriate for arbitrary hypergraphs, we have to double-count those edges that contain 𝑢 "twice" (i.e. self-loops), this being represented as a singleton as the edge's value. Since the degree of a vertex can be (positive) infinity (if the graph containing the vertex is not of finite size), the extended addition +𝑒 is used for the summation of the number of "ordinary" edges" and the number of "loops". (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 9-Dec-2020.) |
| ⊢ VtxDeg = (𝑔 ∈ V ↦ ⦋(Vtx‘𝑔) / 𝑣⦌⦋(iEdg‘𝑔) / 𝑒⦌(𝑢 ∈ 𝑣 ↦ ((♯‘{𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ (𝑒‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝑒 ∣ (𝑒‘𝑥) = {𝑢}})))) | ||
| Theorem | vtxdgfval 29431* | The value of the vertex degree function. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 9-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐴 = dom 𝐼 ⇒ ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘𝐺) = (𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}})))) | ||
| Theorem | vtxdgval 29432* | The degree of a vertex. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 10-Dec-2020.) (Revised by AV, 22-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐴 = dom 𝐼 ⇒ ⊢ (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) | ||
| Theorem | vtxdgfival 29433* | The degree of a vertex for graphs of finite size. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 21-Jan-2018.) (Revised by AV, 8-Dec-2020.) (Revised by AV, 22-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐴 = dom 𝐼 ⇒ ⊢ ((𝐴 ∈ Fin ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) + (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) | ||
| Theorem | vtxdgop 29434 | The vertex degree expressed as operation. (Contributed by AV, 12-Dec-2021.) |
| ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘𝐺) = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))) | ||
| Theorem | vtxdgf 29435 | The vertex degree function is a function from vertices to extended nonnegative integers. (Contributed by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 10-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘𝐺):𝑉⟶ℕ0*) | ||
| Theorem | vtxdgelxnn0 29436 | The degree of a vertex is either a nonnegative integer or positive infinity. (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 10-Dec-2020.) (Revised by AV, 22-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑋 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑋) ∈ ℕ0*) | ||
| Theorem | vtxdg0v 29437 | The degree of a vertex in the null graph is zero (or anything else), because there are no vertices. (Contributed by AV, 11-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 = ∅ ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) = 0) | ||
| Theorem | vtxdg0e 29438 | The degree of a vertex in an empty graph is zero, because there are no edges. This is the base case for the induction for calculating the degree of a vertex, for example in a Königsberg graph (see also the induction steps vdegp1ai 29500, vdegp1bi 29501 and vdegp1ci 29502). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 11-Dec-2020.) (Revised by AV, 22-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝑈 ∈ 𝑉 ∧ 𝐼 = ∅) → ((VtxDeg‘𝐺)‘𝑈) = 0) | ||
| Theorem | vtxdgfisnn0 29439 | The degree of a vertex in a graph of finite size is a nonnegative integer. (Contributed by Alexander van der Vekens, 10-Mar-2018.) (Revised by AV, 11-Dec-2020.) (Revised by AV, 22-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐴 = dom 𝐼 ⇒ ⊢ ((𝐴 ∈ Fin ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) ∈ ℕ0) | ||
| Theorem | vtxdgfisf 29440 | The vertex degree function on graphs of finite size is a function from vertices to nonnegative integers. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 11-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐴 = dom 𝐼 ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐴 ∈ Fin) → (VtxDeg‘𝐺):𝑉⟶ℕ0) | ||
| Theorem | vtxdeqd 29441 | Equality theorem for the vertex degree: If two graphs are structurally equal, their vertex degree functions are equal. (Contributed by AV, 26-Feb-2021.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑋) & ⊢ (𝜑 → 𝐻 ∈ 𝑌) & ⊢ (𝜑 → (Vtx‘𝐻) = (Vtx‘𝐺)) & ⊢ (𝜑 → (iEdg‘𝐻) = (iEdg‘𝐺)) ⇒ ⊢ (𝜑 → (VtxDeg‘𝐻) = (VtxDeg‘𝐺)) | ||
| Theorem | vtxduhgr0e 29442 | The degree of a vertex in an empty hypergraph is zero, because there are no edges. Analogue of vtxdg0e 29438. (Contributed by AV, 15-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ∧ 𝐸 = ∅) → ((VtxDeg‘𝐺)‘𝑈) = 0) | ||
| Theorem | vtxdlfuhgr1v 29443* | The degree of the vertex in a loop-free hypergraph with one vertex is 0. (Contributed by AV, 2-Apr-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼⟶𝐸) → (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = 0)) | ||
| Theorem | vdumgr0 29444 | A vertex in a multigraph has degree 0 if the graph consists of only one vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 2-Apr-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ∧ (♯‘𝑉) = 1) → ((VtxDeg‘𝐺)‘𝑁) = 0) | ||
| Theorem | vtxdun 29445 | The degree of a vertex in the union of two graphs on the same vertex set is the sum of the degrees of the vertex in each graph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 21-Dec-2017.) (Revised by AV, 19-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) & ⊢ (𝜑 → (dom 𝐼 ∩ dom 𝐽) = ∅) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → Fun 𝐽) & ⊢ (𝜑 → 𝑁 ∈ 𝑉) & ⊢ (𝜑 → (iEdg‘𝑈) = (𝐼 ∪ 𝐽)) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝑈)‘𝑁) = (((VtxDeg‘𝐺)‘𝑁) +𝑒 ((VtxDeg‘𝐻)‘𝑁))) | ||
| Theorem | vtxdfiun 29446 | The degree of a vertex in the union of two hypergraphs of finite size on the same vertex set is the sum of the degrees of the vertex in each hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 21-Jan-2018.) (Revised by AV, 19-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) & ⊢ (𝜑 → (dom 𝐼 ∩ dom 𝐽) = ∅) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → Fun 𝐽) & ⊢ (𝜑 → 𝑁 ∈ 𝑉) & ⊢ (𝜑 → (iEdg‘𝑈) = (𝐼 ∪ 𝐽)) & ⊢ (𝜑 → dom 𝐼 ∈ Fin) & ⊢ (𝜑 → dom 𝐽 ∈ Fin) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝑈)‘𝑁) = (((VtxDeg‘𝐺)‘𝑁) + ((VtxDeg‘𝐻)‘𝑁))) | ||
| Theorem | vtxduhgrun 29447 | The degree of a vertex in the union of two hypergraphs on the same vertex set is the sum of the degrees of the vertex in each hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 21-Dec-2017.) (Revised by AV, 12-Dec-2020.) (Proof shortened by AV, 19-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) & ⊢ (𝜑 → (dom 𝐼 ∩ dom 𝐽) = ∅) & ⊢ (𝜑 → 𝐺 ∈ UHGraph) & ⊢ (𝜑 → 𝐻 ∈ UHGraph) & ⊢ (𝜑 → 𝑁 ∈ 𝑉) & ⊢ (𝜑 → (iEdg‘𝑈) = (𝐼 ∪ 𝐽)) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝑈)‘𝑁) = (((VtxDeg‘𝐺)‘𝑁) +𝑒 ((VtxDeg‘𝐻)‘𝑁))) | ||
| Theorem | vtxduhgrfiun 29448 | The degree of a vertex in the union of two hypergraphs of finite size on the same vertex set is the sum of the degrees of the vertex in each hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 21-Jan-2018.) (Revised by AV, 7-Dec-2020.) (Proof shortened by AV, 19-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) & ⊢ (𝜑 → (dom 𝐼 ∩ dom 𝐽) = ∅) & ⊢ (𝜑 → 𝐺 ∈ UHGraph) & ⊢ (𝜑 → 𝐻 ∈ UHGraph) & ⊢ (𝜑 → 𝑁 ∈ 𝑉) & ⊢ (𝜑 → (iEdg‘𝑈) = (𝐼 ∪ 𝐽)) & ⊢ (𝜑 → dom 𝐼 ∈ Fin) & ⊢ (𝜑 → dom 𝐽 ∈ Fin) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝑈)‘𝑁) = (((VtxDeg‘𝐺)‘𝑁) + ((VtxDeg‘𝐻)‘𝑁))) | ||
| Theorem | vtxdlfgrval 29449* | The value of the vertex degree function for a loop-free graph 𝐺. (Contributed by AV, 23-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐴 = dom 𝐼 & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈 ∈ 𝑉) → (𝐷‘𝑈) = (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)})) | ||
| Theorem | vtxdumgrval 29450* | The value of the vertex degree function for a multigraph. (Contributed by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 23-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐴 = dom 𝐼 & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ 𝑈 ∈ 𝑉) → (𝐷‘𝑈) = (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)})) | ||
| Theorem | vtxdusgrval 29451* | The value of the vertex degree function for a simple graph. (Contributed by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 11-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐴 = dom 𝐼 & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (𝐷‘𝑈) = (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)})) | ||
| Theorem | vtxd0nedgb 29452* | A vertex has degree 0 iff there is no edge incident with the vertex. (Contributed by AV, 24-Dec-2020.) (Revised by AV, 22-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ (𝑈 ∈ 𝑉 → ((𝐷‘𝑈) = 0 ↔ ¬ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼‘𝑖))) | ||
| Theorem | vtxdushgrfvedglem 29453* | Lemma for vtxdushgrfvedg 29454 and vtxdusgrfvedg 29455. (Contributed by AV, 12-Dec-2020.) (Proof shortened by AV, 5-May-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) = (♯‘{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒})) | ||
| Theorem | vtxdushgrfvedg 29454* | The value of the vertex degree function for a simple hypergraph. (Contributed by AV, 12-Dec-2020.) (Proof shortened by AV, 5-May-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → (𝐷‘𝑈) = ((♯‘{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒}) +𝑒 (♯‘{𝑒 ∈ 𝐸 ∣ 𝑒 = {𝑈}}))) | ||
| Theorem | vtxdusgrfvedg 29455* | The value of the vertex degree function for a simple graph. (Contributed by AV, 12-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (𝐷‘𝑈) = (♯‘{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒})) | ||
| Theorem | vtxduhgr0nedg 29456* | If a vertex in a hypergraph has degree 0, the vertex is not adjacent to another vertex via an edge. (Contributed by Alexander van der Vekens, 8-Dec-2017.) (Revised by AV, 15-Dec-2020.) (Proof shortened by AV, 24-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ∧ (𝐷‘𝑈) = 0) → ¬ ∃𝑣 ∈ 𝑉 {𝑈, 𝑣} ∈ 𝐸) | ||
| Theorem | vtxdumgr0nedg 29457* | If a vertex in a multigraph has degree 0, the vertex is not adjacent to another vertex via an edge. (Contributed by Alexander van der Vekens, 8-Dec-2017.) (Revised by AV, 12-Dec-2020.) (Proof shortened by AV, 15-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ 𝑈 ∈ 𝑉 ∧ (𝐷‘𝑈) = 0) → ¬ ∃𝑣 ∈ 𝑉 {𝑈, 𝑣} ∈ 𝐸) | ||
| Theorem | vtxduhgr0edgnel 29458* | A vertex in a hypergraph has degree 0 iff there is no edge incident with this vertex. (Contributed by AV, 24-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉) → ((𝐷‘𝑈) = 0 ↔ ¬ ∃𝑒 ∈ 𝐸 𝑈 ∈ 𝑒)) | ||
| Theorem | vtxdusgr0edgnel 29459* | A vertex in a simple graph has degree 0 iff there is no edge incident with this vertex. (Contributed by AV, 17-Dec-2020.) (Proof shortened by AV, 24-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ((𝐷‘𝑈) = 0 ↔ ¬ ∃𝑒 ∈ 𝐸 𝑈 ∈ 𝑒)) | ||
| Theorem | vtxdusgr0edgnelALT 29460* | Alternate proof of vtxdusgr0edgnel 29459, not based on vtxduhgr0edgnel 29458. A vertex in a simple graph has degree 0 if there is no edge incident with this vertex. (Contributed by AV, 17-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ((𝐷‘𝑈) = 0 ↔ ¬ ∃𝑒 ∈ 𝐸 𝑈 ∈ 𝑒)) | ||
| Theorem | vtxdgfusgrf 29461 | The vertex degree function on finite simple graphs is a function from vertices to nonnegative integers. (Contributed by AV, 12-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ FinUSGraph → (VtxDeg‘𝐺):𝑉⟶ℕ0) | ||
| Theorem | vtxdgfusgr 29462* | In a finite simple graph, the degree of each vertex is finite. (Contributed by Alexander van der Vekens, 10-Mar-2018.) (Revised by AV, 12-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ FinUSGraph → ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0) | ||
| Theorem | fusgrn0degnn0 29463* | In a nonempty, finite graph there is a vertex having a nonnegative integer as degree. (Contributed by Alexander van der Vekens, 6-Sep-2018.) (Revised by AV, 1-Apr-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛) | ||
| Theorem | 1loopgruspgr 29464 | A graph with one edge which is a loop is a simple pseudograph (see also uspgr1v1eop 29212). (Contributed by AV, 21-Feb-2021.) |
| ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝑁 ∈ 𝑉) & ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝑁}〉}) ⇒ ⊢ (𝜑 → 𝐺 ∈ USPGraph) | ||
| Theorem | 1loopgredg 29465 | The set of edges in a graph (simple pseudograph) with one edge which is a loop is a singleton of a singleton. (Contributed by AV, 17-Dec-2020.) (Revised by AV, 21-Feb-2021.) |
| ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝑁 ∈ 𝑉) & ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝑁}〉}) ⇒ ⊢ (𝜑 → (Edg‘𝐺) = {{𝑁}}) | ||
| Theorem | 1loopgrnb0 29466 | In a graph (simple pseudograph) with one edge which is a loop, the vertex connected with itself by the loop has no neighbors. (Contributed by AV, 17-Dec-2020.) (Revised by AV, 21-Feb-2021.) |
| ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝑁 ∈ 𝑉) & ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝑁}〉}) ⇒ ⊢ (𝜑 → (𝐺 NeighbVtx 𝑁) = ∅) | ||
| Theorem | 1loopgrvd2 29467 | The vertex degree of a one-edge graph, case 4: an edge from a vertex to itself contributes two to the vertex's degree. I. e. in a graph (simple pseudograph) with one edge which is a loop, the vertex connected with itself by the loop has degree 2. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 21-Feb-2021.) |
| ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝑁 ∈ 𝑉) & ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝑁}〉}) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝑁) = 2) | ||
| Theorem | 1loopgrvd0 29468 | The vertex degree of a one-edge graph, case 1 (for a loop): a loop at a vertex other than the given vertex contributes nothing to the vertex degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 21-Feb-2021.) |
| ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝑁 ∈ 𝑉) & ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝑁}〉}) & ⊢ (𝜑 → 𝐾 ∈ (𝑉 ∖ {𝑁})) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐾) = 0) | ||
| Theorem | 1hevtxdg0 29469 | The vertex degree of vertex 𝐷 in a graph 𝐺 with only one hyperedge 𝐸 is 0 if 𝐷 is not incident with the edge 𝐸. (Contributed by AV, 2-Mar-2021.) |
| ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) & ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝑌) & ⊢ (𝜑 → 𝐷 ∉ 𝐸) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐷) = 0) | ||
| Theorem | 1hevtxdg1 29470 | The vertex degree of vertex 𝐷 in a graph 𝐺 with only one hyperedge 𝐸 (not being a loop) is 1 if 𝐷 is incident with the edge 𝐸. (Contributed by AV, 2-Mar-2021.) (Proof shortened by AV, 17-Apr-2021.) |
| ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) & ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝐸) & ⊢ (𝜑 → 2 ≤ (♯‘𝐸)) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐷) = 1) | ||
| Theorem | 1hegrvtxdg1 29471 | The vertex degree of a graph with one hyperedge, case 2: an edge from the given vertex to some other vertex contributes one to the vertex's degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 23-Feb-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑉) & ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) & ⊢ (𝜑 → {𝐵, 𝐶} ⊆ 𝐸) & ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐵) = 1) | ||
| Theorem | 1hegrvtxdg1r 29472 | The vertex degree of a graph with one hyperedge, case 3: an edge from some other vertex to the given vertex contributes one to the vertex's degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 23-Feb-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑉) & ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) & ⊢ (𝜑 → {𝐵, 𝐶} ⊆ 𝐸) & ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐶) = 1) | ||
| Theorem | 1egrvtxdg1 29473 | The vertex degree of a one-edge graph, case 2: an edge from the given vertex to some other vertex contributes one to the vertex's degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 21-Feb-2021.) |
| ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝐵, 𝐶}〉}) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐵) = 1) | ||
| Theorem | 1egrvtxdg1r 29474 | The vertex degree of a one-edge graph, case 3: an edge from some other vertex to the given vertex contributes one to the vertex's degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 21-Feb-2021.) |
| ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝐵, 𝐶}〉}) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐶) = 1) | ||
| Theorem | 1egrvtxdg0 29475 | The vertex degree of a one-edge graph, case 1: an edge between two vertices other than the given vertex contributes nothing to the vertex degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 21-Feb-2021.) |
| ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ≠ 𝐷) & ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝐵, 𝐷}〉}) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐶) = 0) | ||
| Theorem | p1evtxdeqlem 29476 | Lemma for p1evtxdeq 29477 and p1evtxdp1 29478. (Contributed by AV, 3-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → (Vtx‘𝐹) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {〈𝐾, 𝐸〉})) & ⊢ (𝜑 → 𝐾 ∈ 𝑋) & ⊢ (𝜑 → 𝐾 ∉ dom 𝐼) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝑌) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 ((VtxDeg‘〈𝑉, {〈𝐾, 𝐸〉}〉)‘𝑈))) | ||
| Theorem | p1evtxdeq 29477 | If an edge 𝐸 which does not contain vertex 𝑈 is added to a graph 𝐺 (yielding a graph 𝐹), the degree of 𝑈 is the same in both graphs. (Contributed by AV, 2-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → (Vtx‘𝐹) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {〈𝐾, 𝐸〉})) & ⊢ (𝜑 → 𝐾 ∈ 𝑋) & ⊢ (𝜑 → 𝐾 ∉ dom 𝐼) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝑌) & ⊢ (𝜑 → 𝑈 ∉ 𝐸) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = ((VtxDeg‘𝐺)‘𝑈)) | ||
| Theorem | p1evtxdp1 29478 | If an edge 𝐸 (not being a loop) which contains vertex 𝑈 is added to a graph 𝐺 (yielding a graph 𝐹), the degree of 𝑈 is increased by 1. (Contributed by AV, 3-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → (Vtx‘𝐹) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {〈𝐾, 𝐸〉})) & ⊢ (𝜑 → 𝐾 ∈ 𝑋) & ⊢ (𝜑 → 𝐾 ∉ dom 𝐼) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑉) & ⊢ (𝜑 → 𝑈 ∈ 𝐸) & ⊢ (𝜑 → 2 ≤ (♯‘𝐸)) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 1)) | ||
| Theorem | uspgrloopvtx 29479 | The set of vertices in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29212). (Contributed by AV, 17-Dec-2020.) |
| ⊢ 𝐺 = 〈𝑉, {〈𝐴, {𝑁}〉}〉 ⇒ ⊢ (𝑉 ∈ 𝑊 → (Vtx‘𝐺) = 𝑉) | ||
| Theorem | uspgrloopvtxel 29480 | A vertex in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29212). (Contributed by AV, 17-Dec-2020.) |
| ⊢ 𝐺 = 〈𝑉, {〈𝐴, {𝑁}〉}〉 ⇒ ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) → 𝑁 ∈ (Vtx‘𝐺)) | ||
| Theorem | uspgrloopiedg 29481 | The set of edges in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29212) is a singleton of a singleton. (Contributed by AV, 21-Feb-2021.) |
| ⊢ 𝐺 = 〈𝑉, {〈𝐴, {𝑁}〉}〉 ⇒ ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → (iEdg‘𝐺) = {〈𝐴, {𝑁}〉}) | ||
| Theorem | uspgrloopedg 29482 | The set of edges in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29212) is a singleton of a singleton. (Contributed by AV, 17-Dec-2020.) |
| ⊢ 𝐺 = 〈𝑉, {〈𝐴, {𝑁}〉}〉 ⇒ ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → (Edg‘𝐺) = {{𝑁}}) | ||
| Theorem | uspgrloopnb0 29483 | In a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29212), the vertex connected with itself by the loop has no neighbors. (Contributed by AV, 17-Dec-2020.) (Proof shortened by AV, 21-Feb-2021.) |
| ⊢ 𝐺 = 〈𝑉, {〈𝐴, {𝑁}〉}〉 ⇒ ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) = ∅) | ||
| Theorem | uspgrloopvd2 29484 | The vertex degree of a one-edge graph, case 4: an edge from a vertex to itself contributes two to the vertex's degree. I. e. in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29212), the vertex connected with itself by the loop has degree 2. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 17-Dec-2020.) (Proof shortened by AV, 21-Feb-2021.) |
| ⊢ 𝐺 = 〈𝑉, {〈𝐴, {𝑁}〉}〉 ⇒ ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑁) = 2) | ||
| Theorem | umgr2v2evtx 29485 | The set of vertices in a multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020.) |
| ⊢ 𝐺 = 〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉 ⇒ ⊢ (𝑉 ∈ 𝑊 → (Vtx‘𝐺) = 𝑉) | ||
| Theorem | umgr2v2evtxel 29486 | A vertex in a multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020.) |
| ⊢ 𝐺 = 〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉 ⇒ ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ (Vtx‘𝐺)) | ||
| Theorem | umgr2v2eiedg 29487 | The edge function in a multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020.) |
| ⊢ 𝐺 = 〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉 ⇒ ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (iEdg‘𝐺) = {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}) | ||
| Theorem | umgr2v2eedg 29488 | The set of edges in a multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020.) |
| ⊢ 𝐺 = 〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉 ⇒ ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (Edg‘𝐺) = {{𝐴, 𝐵}}) | ||
| Theorem | umgr2v2e 29489 | A multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020.) |
| ⊢ 𝐺 = 〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉 ⇒ ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → 𝐺 ∈ UMGraph) | ||
| Theorem | umgr2v2enb1 29490 | In a multigraph with two edges connecting the same two vertices, each of the vertices has one neighbor. (Contributed by AV, 18-Dec-2020.) |
| ⊢ 𝐺 = 〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉 ⇒ ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (𝐺 NeighbVtx 𝐴) = {𝐵}) | ||
| Theorem | umgr2v2evd2 29491 | In a multigraph with two edges connecting the same two vertices, each of the vertices has degree 2. (Contributed by AV, 18-Dec-2020.) |
| ⊢ 𝐺 = 〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉 ⇒ ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ((VtxDeg‘𝐺)‘𝐴) = 2) | ||
| Theorem | hashnbusgrvd 29492 | In a simple graph, the number of neighbors of a vertex is the degree of this vertex. This theorem does not hold for (simple) pseudographs, because a vertex connected with itself only by a loop has no neighbors, see uspgrloopnb0 29483, but degree 2, see uspgrloopvd2 29484. And it does not hold for multigraphs, because a vertex connected with only one other vertex by two edges has one neighbor, see umgr2v2enb1 29490, but also degree 2, see umgr2v2evd2 29491. (Contributed by Alexander van der Vekens, 17-Dec-2017.) (Revised by AV, 15-Dec-2020.) (Proof shortened by AV, 5-May-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑈)) = ((VtxDeg‘𝐺)‘𝑈)) | ||
| Theorem | usgruvtxvdb 29493 | In a finite simple graph with n vertices a vertex is universal iff the vertex has degree 𝑛 − 1. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 17-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) → (𝑈 ∈ (UnivVtx‘𝐺) ↔ ((VtxDeg‘𝐺)‘𝑈) = ((♯‘𝑉) − 1))) | ||
| Theorem | vdiscusgrb 29494* | A finite simple graph with n vertices is complete iff every vertex has degree 𝑛 − 1. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 22-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ FinUSGraph → (𝐺 ∈ ComplUSGraph ↔ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1))) | ||
| Theorem | vdiscusgr 29495* | In a finite complete simple graph with n vertices every vertex has degree 𝑛 − 1. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 17-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ FinUSGraph → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1) → 𝐺 ∈ ComplUSGraph)) | ||
| Theorem | vtxdusgradjvtx 29496* | The degree of a vertex in a simple graph is the number of vertices adjacent to this vertex. (Contributed by Alexander van der Vekens, 9-Jul-2018.) (Revised by AV, 23-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) = (♯‘{𝑣 ∈ 𝑉 ∣ {𝑈, 𝑣} ∈ 𝐸})) | ||
| Theorem | usgrvd0nedg 29497* | If a vertex in a simple graph has degree 0, the vertex is not adjacent to another vertex via an edge. (Contributed by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 16-Dec-2020.) (Proof shortened by AV, 23-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (((VtxDeg‘𝐺)‘𝑈) = 0 → ¬ ∃𝑣 ∈ 𝑉 {𝑈, 𝑣} ∈ 𝐸)) | ||
| Theorem | uhgrvd00 29498* | If every vertex in a hypergraph has degree 0, there is no edge in the graph. (Contributed by Alexander van der Vekens, 12-Jul-2018.) (Revised by AV, 24-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ UHGraph → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 → 𝐸 = ∅)) | ||
| Theorem | usgrvd00 29499* | If every vertex in a simple graph has degree 0, there is no edge in the graph. (Contributed by Alexander van der Vekens, 12-Jul-2018.) (Revised by AV, 17-Dec-2020.) (Proof shortened by AV, 23-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ USGraph → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 → 𝐸 = ∅)) | ||
| Theorem | vdegp1ai 29500* | The induction step for a vertex degree calculation. If the degree of 𝑈 in the edge set 𝐸 is 𝑃, then adding {𝑋, 𝑌} to the edge set, where 𝑋 ≠ 𝑈 ≠ 𝑌, yields degree 𝑃 as well. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 3-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 ∈ 𝑉 & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} & ⊢ ((VtxDeg‘𝐺)‘𝑈) = 𝑃 & ⊢ (Vtx‘𝐹) = 𝑉 & ⊢ 𝑋 ∈ 𝑉 & ⊢ 𝑋 ≠ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑌 ≠ 𝑈 & ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑋, 𝑌}”〉) ⇒ ⊢ ((VtxDeg‘𝐹)‘𝑈) = 𝑃 | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |