| Metamath
Proof Explorer Theorem List (p. 295 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | vtxdgfisnn0 29401 | The degree of a vertex in a graph of finite size is a nonnegative integer. (Contributed by Alexander van der Vekens, 10-Mar-2018.) (Revised by AV, 11-Dec-2020.) (Revised by AV, 22-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐴 = dom 𝐼 ⇒ ⊢ ((𝐴 ∈ Fin ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) ∈ ℕ0) | ||
| Theorem | vtxdgfisf 29402 | The vertex degree function on graphs of finite size is a function from vertices to nonnegative integers. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 11-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐴 = dom 𝐼 ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐴 ∈ Fin) → (VtxDeg‘𝐺):𝑉⟶ℕ0) | ||
| Theorem | vtxdeqd 29403 | Equality theorem for the vertex degree: If two graphs are structurally equal, their vertex degree functions are equal. (Contributed by AV, 26-Feb-2021.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑋) & ⊢ (𝜑 → 𝐻 ∈ 𝑌) & ⊢ (𝜑 → (Vtx‘𝐻) = (Vtx‘𝐺)) & ⊢ (𝜑 → (iEdg‘𝐻) = (iEdg‘𝐺)) ⇒ ⊢ (𝜑 → (VtxDeg‘𝐻) = (VtxDeg‘𝐺)) | ||
| Theorem | vtxduhgr0e 29404 | The degree of a vertex in an empty hypergraph is zero, because there are no edges. Analogue of vtxdg0e 29400. (Contributed by AV, 15-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ∧ 𝐸 = ∅) → ((VtxDeg‘𝐺)‘𝑈) = 0) | ||
| Theorem | vtxdlfuhgr1v 29405* | The degree of the vertex in a loop-free hypergraph with one vertex is 0. (Contributed by AV, 2-Apr-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼⟶𝐸) → (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = 0)) | ||
| Theorem | vdumgr0 29406 | A vertex in a multigraph has degree 0 if the graph consists of only one vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 2-Apr-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ∧ (♯‘𝑉) = 1) → ((VtxDeg‘𝐺)‘𝑁) = 0) | ||
| Theorem | vtxdun 29407 | The degree of a vertex in the union of two graphs on the same vertex set is the sum of the degrees of the vertex in each graph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 21-Dec-2017.) (Revised by AV, 19-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) & ⊢ (𝜑 → (dom 𝐼 ∩ dom 𝐽) = ∅) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → Fun 𝐽) & ⊢ (𝜑 → 𝑁 ∈ 𝑉) & ⊢ (𝜑 → (iEdg‘𝑈) = (𝐼 ∪ 𝐽)) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝑈)‘𝑁) = (((VtxDeg‘𝐺)‘𝑁) +𝑒 ((VtxDeg‘𝐻)‘𝑁))) | ||
| Theorem | vtxdfiun 29408 | The degree of a vertex in the union of two hypergraphs of finite size on the same vertex set is the sum of the degrees of the vertex in each hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 21-Jan-2018.) (Revised by AV, 19-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) & ⊢ (𝜑 → (dom 𝐼 ∩ dom 𝐽) = ∅) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → Fun 𝐽) & ⊢ (𝜑 → 𝑁 ∈ 𝑉) & ⊢ (𝜑 → (iEdg‘𝑈) = (𝐼 ∪ 𝐽)) & ⊢ (𝜑 → dom 𝐼 ∈ Fin) & ⊢ (𝜑 → dom 𝐽 ∈ Fin) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝑈)‘𝑁) = (((VtxDeg‘𝐺)‘𝑁) + ((VtxDeg‘𝐻)‘𝑁))) | ||
| Theorem | vtxduhgrun 29409 | The degree of a vertex in the union of two hypergraphs on the same vertex set is the sum of the degrees of the vertex in each hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 21-Dec-2017.) (Revised by AV, 12-Dec-2020.) (Proof shortened by AV, 19-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) & ⊢ (𝜑 → (dom 𝐼 ∩ dom 𝐽) = ∅) & ⊢ (𝜑 → 𝐺 ∈ UHGraph) & ⊢ (𝜑 → 𝐻 ∈ UHGraph) & ⊢ (𝜑 → 𝑁 ∈ 𝑉) & ⊢ (𝜑 → (iEdg‘𝑈) = (𝐼 ∪ 𝐽)) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝑈)‘𝑁) = (((VtxDeg‘𝐺)‘𝑁) +𝑒 ((VtxDeg‘𝐻)‘𝑁))) | ||
| Theorem | vtxduhgrfiun 29410 | The degree of a vertex in the union of two hypergraphs of finite size on the same vertex set is the sum of the degrees of the vertex in each hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 21-Jan-2018.) (Revised by AV, 7-Dec-2020.) (Proof shortened by AV, 19-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) & ⊢ (𝜑 → (dom 𝐼 ∩ dom 𝐽) = ∅) & ⊢ (𝜑 → 𝐺 ∈ UHGraph) & ⊢ (𝜑 → 𝐻 ∈ UHGraph) & ⊢ (𝜑 → 𝑁 ∈ 𝑉) & ⊢ (𝜑 → (iEdg‘𝑈) = (𝐼 ∪ 𝐽)) & ⊢ (𝜑 → dom 𝐼 ∈ Fin) & ⊢ (𝜑 → dom 𝐽 ∈ Fin) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝑈)‘𝑁) = (((VtxDeg‘𝐺)‘𝑁) + ((VtxDeg‘𝐻)‘𝑁))) | ||
| Theorem | vtxdlfgrval 29411* | The value of the vertex degree function for a loop-free graph 𝐺. (Contributed by AV, 23-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐴 = dom 𝐼 & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈 ∈ 𝑉) → (𝐷‘𝑈) = (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)})) | ||
| Theorem | vtxdumgrval 29412* | The value of the vertex degree function for a multigraph. (Contributed by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 23-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐴 = dom 𝐼 & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ 𝑈 ∈ 𝑉) → (𝐷‘𝑈) = (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)})) | ||
| Theorem | vtxdusgrval 29413* | The value of the vertex degree function for a simple graph. (Contributed by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 11-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐴 = dom 𝐼 & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (𝐷‘𝑈) = (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)})) | ||
| Theorem | vtxd0nedgb 29414* | A vertex has degree 0 iff there is no edge incident with the vertex. (Contributed by AV, 24-Dec-2020.) (Revised by AV, 22-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ (𝑈 ∈ 𝑉 → ((𝐷‘𝑈) = 0 ↔ ¬ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼‘𝑖))) | ||
| Theorem | vtxdushgrfvedglem 29415* | Lemma for vtxdushgrfvedg 29416 and vtxdusgrfvedg 29417. (Contributed by AV, 12-Dec-2020.) (Proof shortened by AV, 5-May-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) = (♯‘{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒})) | ||
| Theorem | vtxdushgrfvedg 29416* | The value of the vertex degree function for a simple hypergraph. (Contributed by AV, 12-Dec-2020.) (Proof shortened by AV, 5-May-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → (𝐷‘𝑈) = ((♯‘{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒}) +𝑒 (♯‘{𝑒 ∈ 𝐸 ∣ 𝑒 = {𝑈}}))) | ||
| Theorem | vtxdusgrfvedg 29417* | The value of the vertex degree function for a simple graph. (Contributed by AV, 12-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (𝐷‘𝑈) = (♯‘{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒})) | ||
| Theorem | vtxduhgr0nedg 29418* | If a vertex in a hypergraph has degree 0, the vertex is not adjacent to another vertex via an edge. (Contributed by Alexander van der Vekens, 8-Dec-2017.) (Revised by AV, 15-Dec-2020.) (Proof shortened by AV, 24-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ∧ (𝐷‘𝑈) = 0) → ¬ ∃𝑣 ∈ 𝑉 {𝑈, 𝑣} ∈ 𝐸) | ||
| Theorem | vtxdumgr0nedg 29419* | If a vertex in a multigraph has degree 0, the vertex is not adjacent to another vertex via an edge. (Contributed by Alexander van der Vekens, 8-Dec-2017.) (Revised by AV, 12-Dec-2020.) (Proof shortened by AV, 15-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ 𝑈 ∈ 𝑉 ∧ (𝐷‘𝑈) = 0) → ¬ ∃𝑣 ∈ 𝑉 {𝑈, 𝑣} ∈ 𝐸) | ||
| Theorem | vtxduhgr0edgnel 29420* | A vertex in a hypergraph has degree 0 iff there is no edge incident with this vertex. (Contributed by AV, 24-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉) → ((𝐷‘𝑈) = 0 ↔ ¬ ∃𝑒 ∈ 𝐸 𝑈 ∈ 𝑒)) | ||
| Theorem | vtxdusgr0edgnel 29421* | A vertex in a simple graph has degree 0 iff there is no edge incident with this vertex. (Contributed by AV, 17-Dec-2020.) (Proof shortened by AV, 24-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ((𝐷‘𝑈) = 0 ↔ ¬ ∃𝑒 ∈ 𝐸 𝑈 ∈ 𝑒)) | ||
| Theorem | vtxdusgr0edgnelALT 29422* | Alternate proof of vtxdusgr0edgnel 29421, not based on vtxduhgr0edgnel 29420. A vertex in a simple graph has degree 0 if there is no edge incident with this vertex. (Contributed by AV, 17-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ((𝐷‘𝑈) = 0 ↔ ¬ ∃𝑒 ∈ 𝐸 𝑈 ∈ 𝑒)) | ||
| Theorem | vtxdgfusgrf 29423 | The vertex degree function on finite simple graphs is a function from vertices to nonnegative integers. (Contributed by AV, 12-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ FinUSGraph → (VtxDeg‘𝐺):𝑉⟶ℕ0) | ||
| Theorem | vtxdgfusgr 29424* | In a finite simple graph, the degree of each vertex is finite. (Contributed by Alexander van der Vekens, 10-Mar-2018.) (Revised by AV, 12-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ FinUSGraph → ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0) | ||
| Theorem | fusgrn0degnn0 29425* | In a nonempty, finite graph there is a vertex having a nonnegative integer as degree. (Contributed by Alexander van der Vekens, 6-Sep-2018.) (Revised by AV, 1-Apr-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛) | ||
| Theorem | 1loopgruspgr 29426 | A graph with one edge which is a loop is a simple pseudograph (see also uspgr1v1eop 29174). (Contributed by AV, 21-Feb-2021.) |
| ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝑁 ∈ 𝑉) & ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝑁}〉}) ⇒ ⊢ (𝜑 → 𝐺 ∈ USPGraph) | ||
| Theorem | 1loopgredg 29427 | The set of edges in a graph (simple pseudograph) with one edge which is a loop is a singleton of a singleton. (Contributed by AV, 17-Dec-2020.) (Revised by AV, 21-Feb-2021.) |
| ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝑁 ∈ 𝑉) & ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝑁}〉}) ⇒ ⊢ (𝜑 → (Edg‘𝐺) = {{𝑁}}) | ||
| Theorem | 1loopgrnb0 29428 | In a graph (simple pseudograph) with one edge which is a loop, the vertex connected with itself by the loop has no neighbors. (Contributed by AV, 17-Dec-2020.) (Revised by AV, 21-Feb-2021.) |
| ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝑁 ∈ 𝑉) & ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝑁}〉}) ⇒ ⊢ (𝜑 → (𝐺 NeighbVtx 𝑁) = ∅) | ||
| Theorem | 1loopgrvd2 29429 | The vertex degree of a one-edge graph, case 4: an edge from a vertex to itself contributes two to the vertex's degree. I. e. in a graph (simple pseudograph) with one edge which is a loop, the vertex connected with itself by the loop has degree 2. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 21-Feb-2021.) |
| ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝑁 ∈ 𝑉) & ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝑁}〉}) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝑁) = 2) | ||
| Theorem | 1loopgrvd0 29430 | The vertex degree of a one-edge graph, case 1 (for a loop): a loop at a vertex other than the given vertex contributes nothing to the vertex degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 21-Feb-2021.) |
| ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝑁 ∈ 𝑉) & ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝑁}〉}) & ⊢ (𝜑 → 𝐾 ∈ (𝑉 ∖ {𝑁})) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐾) = 0) | ||
| Theorem | 1hevtxdg0 29431 | The vertex degree of vertex 𝐷 in a graph 𝐺 with only one hyperedge 𝐸 is 0 if 𝐷 is not incident with the edge 𝐸. (Contributed by AV, 2-Mar-2021.) |
| ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) & ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝑌) & ⊢ (𝜑 → 𝐷 ∉ 𝐸) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐷) = 0) | ||
| Theorem | 1hevtxdg1 29432 | The vertex degree of vertex 𝐷 in a graph 𝐺 with only one hyperedge 𝐸 (not being a loop) is 1 if 𝐷 is incident with the edge 𝐸. (Contributed by AV, 2-Mar-2021.) (Proof shortened by AV, 17-Apr-2021.) |
| ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) & ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝐸) & ⊢ (𝜑 → 2 ≤ (♯‘𝐸)) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐷) = 1) | ||
| Theorem | 1hegrvtxdg1 29433 | The vertex degree of a graph with one hyperedge, case 2: an edge from the given vertex to some other vertex contributes one to the vertex's degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 23-Feb-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑉) & ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) & ⊢ (𝜑 → {𝐵, 𝐶} ⊆ 𝐸) & ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐵) = 1) | ||
| Theorem | 1hegrvtxdg1r 29434 | The vertex degree of a graph with one hyperedge, case 3: an edge from some other vertex to the given vertex contributes one to the vertex's degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 23-Feb-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑉) & ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) & ⊢ (𝜑 → {𝐵, 𝐶} ⊆ 𝐸) & ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐶) = 1) | ||
| Theorem | 1egrvtxdg1 29435 | The vertex degree of a one-edge graph, case 2: an edge from the given vertex to some other vertex contributes one to the vertex's degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 21-Feb-2021.) |
| ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝐵, 𝐶}〉}) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐵) = 1) | ||
| Theorem | 1egrvtxdg1r 29436 | The vertex degree of a one-edge graph, case 3: an edge from some other vertex to the given vertex contributes one to the vertex's degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 21-Feb-2021.) |
| ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝐵, 𝐶}〉}) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐶) = 1) | ||
| Theorem | 1egrvtxdg0 29437 | The vertex degree of a one-edge graph, case 1: an edge between two vertices other than the given vertex contributes nothing to the vertex degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 21-Feb-2021.) |
| ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ≠ 𝐷) & ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝐵, 𝐷}〉}) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐶) = 0) | ||
| Theorem | p1evtxdeqlem 29438 | Lemma for p1evtxdeq 29439 and p1evtxdp1 29440. (Contributed by AV, 3-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → (Vtx‘𝐹) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {〈𝐾, 𝐸〉})) & ⊢ (𝜑 → 𝐾 ∈ 𝑋) & ⊢ (𝜑 → 𝐾 ∉ dom 𝐼) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝑌) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 ((VtxDeg‘〈𝑉, {〈𝐾, 𝐸〉}〉)‘𝑈))) | ||
| Theorem | p1evtxdeq 29439 | If an edge 𝐸 which does not contain vertex 𝑈 is added to a graph 𝐺 (yielding a graph 𝐹), the degree of 𝑈 is the same in both graphs. (Contributed by AV, 2-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → (Vtx‘𝐹) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {〈𝐾, 𝐸〉})) & ⊢ (𝜑 → 𝐾 ∈ 𝑋) & ⊢ (𝜑 → 𝐾 ∉ dom 𝐼) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝑌) & ⊢ (𝜑 → 𝑈 ∉ 𝐸) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = ((VtxDeg‘𝐺)‘𝑈)) | ||
| Theorem | p1evtxdp1 29440 | If an edge 𝐸 (not being a loop) which contains vertex 𝑈 is added to a graph 𝐺 (yielding a graph 𝐹), the degree of 𝑈 is increased by 1. (Contributed by AV, 3-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → (Vtx‘𝐹) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {〈𝐾, 𝐸〉})) & ⊢ (𝜑 → 𝐾 ∈ 𝑋) & ⊢ (𝜑 → 𝐾 ∉ dom 𝐼) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑉) & ⊢ (𝜑 → 𝑈 ∈ 𝐸) & ⊢ (𝜑 → 2 ≤ (♯‘𝐸)) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 1)) | ||
| Theorem | uspgrloopvtx 29441 | The set of vertices in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29174). (Contributed by AV, 17-Dec-2020.) |
| ⊢ 𝐺 = 〈𝑉, {〈𝐴, {𝑁}〉}〉 ⇒ ⊢ (𝑉 ∈ 𝑊 → (Vtx‘𝐺) = 𝑉) | ||
| Theorem | uspgrloopvtxel 29442 | A vertex in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29174). (Contributed by AV, 17-Dec-2020.) |
| ⊢ 𝐺 = 〈𝑉, {〈𝐴, {𝑁}〉}〉 ⇒ ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) → 𝑁 ∈ (Vtx‘𝐺)) | ||
| Theorem | uspgrloopiedg 29443 | The set of edges in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29174) is a singleton of a singleton. (Contributed by AV, 21-Feb-2021.) |
| ⊢ 𝐺 = 〈𝑉, {〈𝐴, {𝑁}〉}〉 ⇒ ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → (iEdg‘𝐺) = {〈𝐴, {𝑁}〉}) | ||
| Theorem | uspgrloopedg 29444 | The set of edges in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29174) is a singleton of a singleton. (Contributed by AV, 17-Dec-2020.) |
| ⊢ 𝐺 = 〈𝑉, {〈𝐴, {𝑁}〉}〉 ⇒ ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → (Edg‘𝐺) = {{𝑁}}) | ||
| Theorem | uspgrloopnb0 29445 | In a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29174), the vertex connected with itself by the loop has no neighbors. (Contributed by AV, 17-Dec-2020.) (Proof shortened by AV, 21-Feb-2021.) |
| ⊢ 𝐺 = 〈𝑉, {〈𝐴, {𝑁}〉}〉 ⇒ ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) = ∅) | ||
| Theorem | uspgrloopvd2 29446 | The vertex degree of a one-edge graph, case 4: an edge from a vertex to itself contributes two to the vertex's degree. I. e. in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29174), the vertex connected with itself by the loop has degree 2. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 17-Dec-2020.) (Proof shortened by AV, 21-Feb-2021.) |
| ⊢ 𝐺 = 〈𝑉, {〈𝐴, {𝑁}〉}〉 ⇒ ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑁) = 2) | ||
| Theorem | umgr2v2evtx 29447 | The set of vertices in a multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020.) |
| ⊢ 𝐺 = 〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉 ⇒ ⊢ (𝑉 ∈ 𝑊 → (Vtx‘𝐺) = 𝑉) | ||
| Theorem | umgr2v2evtxel 29448 | A vertex in a multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020.) |
| ⊢ 𝐺 = 〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉 ⇒ ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ (Vtx‘𝐺)) | ||
| Theorem | umgr2v2eiedg 29449 | The edge function in a multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020.) |
| ⊢ 𝐺 = 〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉 ⇒ ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (iEdg‘𝐺) = {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}) | ||
| Theorem | umgr2v2eedg 29450 | The set of edges in a multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020.) |
| ⊢ 𝐺 = 〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉 ⇒ ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (Edg‘𝐺) = {{𝐴, 𝐵}}) | ||
| Theorem | umgr2v2e 29451 | A multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020.) |
| ⊢ 𝐺 = 〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉 ⇒ ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → 𝐺 ∈ UMGraph) | ||
| Theorem | umgr2v2enb1 29452 | In a multigraph with two edges connecting the same two vertices, each of the vertices has one neighbor. (Contributed by AV, 18-Dec-2020.) |
| ⊢ 𝐺 = 〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉 ⇒ ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (𝐺 NeighbVtx 𝐴) = {𝐵}) | ||
| Theorem | umgr2v2evd2 29453 | In a multigraph with two edges connecting the same two vertices, each of the vertices has degree 2. (Contributed by AV, 18-Dec-2020.) |
| ⊢ 𝐺 = 〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉 ⇒ ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ((VtxDeg‘𝐺)‘𝐴) = 2) | ||
| Theorem | hashnbusgrvd 29454 | In a simple graph, the number of neighbors of a vertex is the degree of this vertex. This theorem does not hold for (simple) pseudographs, because a vertex connected with itself only by a loop has no neighbors, see uspgrloopnb0 29445, but degree 2, see uspgrloopvd2 29446. And it does not hold for multigraphs, because a vertex connected with only one other vertex by two edges has one neighbor, see umgr2v2enb1 29452, but also degree 2, see umgr2v2evd2 29453. (Contributed by Alexander van der Vekens, 17-Dec-2017.) (Revised by AV, 15-Dec-2020.) (Proof shortened by AV, 5-May-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑈)) = ((VtxDeg‘𝐺)‘𝑈)) | ||
| Theorem | usgruvtxvdb 29455 | In a finite simple graph with n vertices a vertex is universal iff the vertex has degree 𝑛 − 1. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 17-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) → (𝑈 ∈ (UnivVtx‘𝐺) ↔ ((VtxDeg‘𝐺)‘𝑈) = ((♯‘𝑉) − 1))) | ||
| Theorem | vdiscusgrb 29456* | A finite simple graph with n vertices is complete iff every vertex has degree 𝑛 − 1. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 22-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ FinUSGraph → (𝐺 ∈ ComplUSGraph ↔ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1))) | ||
| Theorem | vdiscusgr 29457* | In a finite complete simple graph with n vertices every vertex has degree 𝑛 − 1. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 17-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ FinUSGraph → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1) → 𝐺 ∈ ComplUSGraph)) | ||
| Theorem | vtxdusgradjvtx 29458* | The degree of a vertex in a simple graph is the number of vertices adjacent to this vertex. (Contributed by Alexander van der Vekens, 9-Jul-2018.) (Revised by AV, 23-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) = (♯‘{𝑣 ∈ 𝑉 ∣ {𝑈, 𝑣} ∈ 𝐸})) | ||
| Theorem | usgrvd0nedg 29459* | If a vertex in a simple graph has degree 0, the vertex is not adjacent to another vertex via an edge. (Contributed by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 16-Dec-2020.) (Proof shortened by AV, 23-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (((VtxDeg‘𝐺)‘𝑈) = 0 → ¬ ∃𝑣 ∈ 𝑉 {𝑈, 𝑣} ∈ 𝐸)) | ||
| Theorem | uhgrvd00 29460* | If every vertex in a hypergraph has degree 0, there is no edge in the graph. (Contributed by Alexander van der Vekens, 12-Jul-2018.) (Revised by AV, 24-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ UHGraph → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 → 𝐸 = ∅)) | ||
| Theorem | usgrvd00 29461* | If every vertex in a simple graph has degree 0, there is no edge in the graph. (Contributed by Alexander van der Vekens, 12-Jul-2018.) (Revised by AV, 17-Dec-2020.) (Proof shortened by AV, 23-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ USGraph → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 → 𝐸 = ∅)) | ||
| Theorem | vdegp1ai 29462* | The induction step for a vertex degree calculation. If the degree of 𝑈 in the edge set 𝐸 is 𝑃, then adding {𝑋, 𝑌} to the edge set, where 𝑋 ≠ 𝑈 ≠ 𝑌, yields degree 𝑃 as well. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 3-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 ∈ 𝑉 & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} & ⊢ ((VtxDeg‘𝐺)‘𝑈) = 𝑃 & ⊢ (Vtx‘𝐹) = 𝑉 & ⊢ 𝑋 ∈ 𝑉 & ⊢ 𝑋 ≠ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑌 ≠ 𝑈 & ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑋, 𝑌}”〉) ⇒ ⊢ ((VtxDeg‘𝐹)‘𝑈) = 𝑃 | ||
| Theorem | vdegp1bi 29463* | The induction step for a vertex degree calculation, for example in the Königsberg graph. If the degree of 𝑈 in the edge set 𝐸 is 𝑃, then adding {𝑈, 𝑋} to the edge set, where 𝑋 ≠ 𝑈, yields degree 𝑃 + 1. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 3-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 ∈ 𝑉 & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} & ⊢ ((VtxDeg‘𝐺)‘𝑈) = 𝑃 & ⊢ (Vtx‘𝐹) = 𝑉 & ⊢ 𝑋 ∈ 𝑉 & ⊢ 𝑋 ≠ 𝑈 & ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑈, 𝑋}”〉) ⇒ ⊢ ((VtxDeg‘𝐹)‘𝑈) = (𝑃 + 1) | ||
| Theorem | vdegp1ci 29464* | The induction step for a vertex degree calculation, for example in the Königsberg graph. If the degree of 𝑈 in the edge set 𝐸 is 𝑃, then adding {𝑋, 𝑈} to the edge set, where 𝑋 ≠ 𝑈, yields degree 𝑃 + 1. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 3-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 ∈ 𝑉 & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} & ⊢ ((VtxDeg‘𝐺)‘𝑈) = 𝑃 & ⊢ (Vtx‘𝐹) = 𝑉 & ⊢ 𝑋 ∈ 𝑉 & ⊢ 𝑋 ≠ 𝑈 & ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑋, 𝑈}”〉) ⇒ ⊢ ((VtxDeg‘𝐹)‘𝑈) = (𝑃 + 1) | ||
| Theorem | vtxdginducedm1lem1 29465 | Lemma 1 for vtxdginducedm1 29469: the edge function in the induced subgraph 𝑆 of a pseudograph 𝐺 obtained by removing one vertex 𝑁. (Contributed by AV, 16-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐾 = (𝑉 ∖ {𝑁}) & ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} & ⊢ 𝑃 = (𝐸 ↾ 𝐼) & ⊢ 𝑆 = 〈𝐾, 𝑃〉 ⇒ ⊢ (iEdg‘𝑆) = 𝑃 | ||
| Theorem | vtxdginducedm1lem2 29466* | Lemma 2 for vtxdginducedm1 29469: the domain of the edge function in the induced subgraph 𝑆 of a pseudograph 𝐺 obtained by removing one vertex 𝑁. (Contributed by AV, 16-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐾 = (𝑉 ∖ {𝑁}) & ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} & ⊢ 𝑃 = (𝐸 ↾ 𝐼) & ⊢ 𝑆 = 〈𝐾, 𝑃〉 ⇒ ⊢ dom (iEdg‘𝑆) = 𝐼 | ||
| Theorem | vtxdginducedm1lem3 29467* | Lemma 3 for vtxdginducedm1 29469: an edge in the induced subgraph 𝑆 of a pseudograph 𝐺 obtained by removing one vertex 𝑁. (Contributed by AV, 16-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐾 = (𝑉 ∖ {𝑁}) & ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} & ⊢ 𝑃 = (𝐸 ↾ 𝐼) & ⊢ 𝑆 = 〈𝐾, 𝑃〉 ⇒ ⊢ (𝐻 ∈ 𝐼 → ((iEdg‘𝑆)‘𝐻) = (𝐸‘𝐻)) | ||
| Theorem | vtxdginducedm1lem4 29468* | Lemma 4 for vtxdginducedm1 29469. (Contributed by AV, 17-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐾 = (𝑉 ∖ {𝑁}) & ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} & ⊢ 𝑃 = (𝐸 ↾ 𝐼) & ⊢ 𝑆 = 〈𝐾, 𝑃〉 & ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} ⇒ ⊢ (𝑊 ∈ (𝑉 ∖ {𝑁}) → (♯‘{𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}}) = 0) | ||
| Theorem | vtxdginducedm1 29469* | The degree of a vertex 𝑣 in the induced subgraph 𝑆 of a pseudograph 𝐺 obtained by removing one vertex 𝑁 plus the number of edges joining the vertex 𝑣 and the vertex 𝑁 is the degree of the vertex 𝑣 in the pseudograph 𝐺. (Contributed by AV, 17-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐾 = (𝑉 ∖ {𝑁}) & ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} & ⊢ 𝑃 = (𝐸 ↾ 𝐼) & ⊢ 𝑆 = 〈𝐾, 𝑃〉 & ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} ⇒ ⊢ ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})) | ||
| Theorem | vtxdginducedm1fi 29470* | The degree of a vertex 𝑣 in the induced subgraph 𝑆 of a pseudograph 𝐺 of finite size obtained by removing one vertex 𝑁 plus the number of edges joining the vertex 𝑣 and the vertex 𝑁 is the degree of the vertex 𝑣 in the pseudograph 𝐺. (Contributed by AV, 18-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐾 = (𝑉 ∖ {𝑁}) & ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} & ⊢ 𝑃 = (𝐸 ↾ 𝐼) & ⊢ 𝑆 = 〈𝐾, 𝑃〉 & ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} ⇒ ⊢ (𝐸 ∈ Fin → ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}))) | ||
| Theorem | finsumvtxdg2ssteplem1 29471* | Lemma for finsumvtxdg2sstep 29475. (Contributed by AV, 15-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐾 = (𝑉 ∖ {𝑁}) & ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} & ⊢ 𝑃 = (𝐸 ↾ 𝐼) & ⊢ 𝑆 = 〈𝐾, 𝑃〉 & ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} ⇒ ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝐸) = ((♯‘𝑃) + (♯‘𝐽))) | ||
| Theorem | finsumvtxdg2ssteplem2 29472* | Lemma for finsumvtxdg2sstep 29475. (Contributed by AV, 12-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐾 = (𝑉 ∖ {𝑁}) & ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} & ⊢ 𝑃 = (𝐸 ↾ 𝐼) & ⊢ 𝑆 = 〈𝐾, 𝑃〉 & ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} ⇒ ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((VtxDeg‘𝐺)‘𝑁) = ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}}))) | ||
| Theorem | finsumvtxdg2ssteplem3 29473* | Lemma for finsumvtxdg2sstep 29475. (Contributed by AV, 19-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐾 = (𝑉 ∖ {𝑁}) & ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} & ⊢ 𝑃 = (𝐸 ↾ 𝐼) & ⊢ 𝑆 = 〈𝐾, 𝑃〉 & ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} ⇒ ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})) = (♯‘𝐽)) | ||
| Theorem | finsumvtxdg2ssteplem4 29474* | Lemma for finsumvtxdg2sstep 29475. (Contributed by AV, 12-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐾 = (𝑉 ∖ {𝑁}) & ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} & ⊢ 𝑃 = (𝐸 ↾ 𝐼) & ⊢ 𝑆 = 〈𝐾, 𝑃〉 & ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} ⇒ ⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣 ∈ 𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}}))) = (2 · ((♯‘𝑃) + (♯‘𝐽)))) | ||
| Theorem | finsumvtxdg2sstep 29475* | Induction step of finsumvtxdg2size 29476: In a finite pseudograph of finite size, the sum of the degrees of all vertices of the pseudograph is twice the size of the pseudograph if the sum of the degrees of all vertices of the subgraph of the pseudograph not containing one of the vertices is twice the size of the subgraph. (Contributed by AV, 19-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐾 = (𝑉 ∖ {𝑁}) & ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} & ⊢ 𝑃 = (𝐸 ↾ 𝐼) & ⊢ 𝑆 = 〈𝐾, 𝑃〉 ⇒ ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((𝑃 ∈ Fin → Σ𝑣 ∈ 𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → Σ𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = (2 · (♯‘𝐸)))) | ||
| Theorem | finsumvtxdg2size 29476* |
The sum of the degrees of all vertices of a finite pseudograph of finite
size is twice the size of the pseudograph. See equation (1) in section
I.1 in [Bollobas] p. 4. Here, the
"proof" is simply the statement
"Since each edge has two endvertices, the sum of the degrees is
exactly
twice the number of edges". The formal proof of this theorem (for
pseudographs) is much more complicated, taking also the used auxiliary
theorems into account. The proof for a (finite) simple graph (see
fusgr1th 29477) would be shorter, but nevertheless still
laborious.
Although this theorem would hold also for infinite pseudographs and
pseudographs of infinite size, the proof of this most general version
(see theorem "sumvtxdg2size" below) would require many more
auxiliary
theorems (e.g., the extension of the sum Σ
over an arbitrary
set).
I dedicate this theorem and its proof to Norman Megill, who deceased too early on December 9, 2021. This proof is an example for the rigor which was the main motivation for Norman Megill to invent and develop Metamath, see section 1.1.6 "Rigor" on page 19 of the Metamath book: "... it is usually assumed in mathematical literature that the person reading the proof is a mathematician familiar with the specialty being described, and that the missing steps are obvious to such a reader or at least the reader is capable of filling them in." I filled in the missing steps of Bollobas' proof as Norm would have liked it... (Contributed by Alexander van der Vekens, 19-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑣 ∈ 𝑉 (𝐷‘𝑣) = (2 · (♯‘𝐼))) | ||
| Theorem | fusgr1th 29477* | The sum of the degrees of all vertices of a finite simple graph is twice the size of the graph. See equation (1) in section I.1 in [Bollobas] p. 4. Also known as the "First Theorem of Graph Theory" (see https://charlesreid1.com/wiki/First_Theorem_of_Graph_Theory). (Contributed by AV, 26-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ (𝐺 ∈ FinUSGraph → Σ𝑣 ∈ 𝑉 (𝐷‘𝑣) = (2 · (♯‘𝐼))) | ||
| Theorem | finsumvtxdgeven 29478* | The sum of the degrees of all vertices of a finite pseudograph of finite size is even. See equation (2) in section I.1 in [Bollobas] p. 4, where it is also called the handshaking lemma. (Contributed by AV, 22-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥ Σ𝑣 ∈ 𝑉 (𝐷‘𝑣)) | ||
| Theorem | vtxdgoddnumeven 29479* | The number of vertices of odd degree is even in a finite pseudograph of finite size. Proposition 1.2.1 in [Diestel] p. 5. See also remark about equation (2) in section I.1 in [Bollobas] p. 4. (Contributed by AV, 22-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥ (♯‘{𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)})) | ||
| Theorem | fusgrvtxdgonume 29480* | The number of vertices of odd degree is even in a finite simple graph. Proposition 1.2.1 in [Diestel] p. 5. See also remark about equation (2) in section I.1 in [Bollobas] p. 4. (Contributed by AV, 27-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ (𝐺 ∈ FinUSGraph → 2 ∥ (♯‘{𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)})) | ||
With df-rgr 29483 and df-rusgr 29484, k-regularity of a (simple) graph is defined as predicate RegGraph resp. RegUSGraph. Instead of defining a predicate, an alternative could have been to define a function that maps an extended nonnegative integer to the class of "graphs" in which every vertex has the extended nonnegative integer as degree: RegGraph = (𝑘 ∈ ℕ0* ↦ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘}). This function, however, would not be defined at least for 𝑘 = 0 (see rgrx0nd 29520), because {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} is not a set (see rgrprcx 29518). It is expected that this function is not defined for every 𝑘 ∈ ℕ0* (how could this be proven?). | ||
| Syntax | crgr 29481 | Extend class notation to include the class of all regular graphs. |
| class RegGraph | ||
| Syntax | crusgr 29482 | Extend class notation to include the class of all regular simple graphs. |
| class RegUSGraph | ||
| Definition | df-rgr 29483* | Define the "k-regular" predicate, which is true for a "graph" being k-regular: read 𝐺 RegGraph 𝐾 as "𝐺 is 𝐾-regular" or "𝐺 is a 𝐾-regular graph". Note that 𝐾 is allowed to be positive infinity (𝐾 ∈ ℕ0*), as proposed by GL. (Contributed by Alexander van der Vekens, 6-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
| ⊢ RegGraph = {〈𝑔, 𝑘〉 ∣ (𝑘 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘)} | ||
| Definition | df-rusgr 29484* | Define the "k-regular simple graph" predicate, which is true for a simple graph being k-regular: read 𝐺 RegUSGraph 𝐾 as 𝐺 is a 𝐾-regular simple graph. (Contributed by Alexander van der Vekens, 6-Jul-2018.) (Revised by AV, 18-Dec-2020.) |
| ⊢ RegUSGraph = {〈𝑔, 𝑘〉 ∣ (𝑔 ∈ USGraph ∧ 𝑔 RegGraph 𝑘)} | ||
| Theorem | isrgr 29485* | The property of a class being a k-regular graph. (Contributed by Alexander van der Vekens, 7-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍) → (𝐺 RegGraph 𝐾 ↔ (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾))) | ||
| Theorem | rgrprop 29486* | The properties of a k-regular graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ (𝐺 RegGraph 𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)) | ||
| Theorem | isrusgr 29487 | The property of being a k-regular simple graph. (Contributed by Alexander van der Vekens, 7-Jul-2018.) (Revised by AV, 18-Dec-2020.) |
| ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾))) | ||
| Theorem | rusgrprop 29488 | The properties of a k-regular simple graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 18-Dec-2020.) |
| ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾)) | ||
| Theorem | rusgrrgr 29489 | A k-regular simple graph is a k-regular graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 18-Dec-2020.) |
| ⊢ (𝐺 RegUSGraph 𝐾 → 𝐺 RegGraph 𝐾) | ||
| Theorem | rusgrusgr 29490 | A k-regular simple graph is a simple graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 18-Dec-2020.) |
| ⊢ (𝐺 RegUSGraph 𝐾 → 𝐺 ∈ USGraph) | ||
| Theorem | finrusgrfusgr 29491 | A finite regular simple graph is a finite simple graph. (Contributed by AV, 3-Jun-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph) | ||
| Theorem | isrusgr0 29492* | The property of being a k-regular simple graph. (Contributed by Alexander van der Vekens, 7-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾))) | ||
| Theorem | rusgrprop0 29493* | The properties of a k-regular simple graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)) | ||
| Theorem | usgreqdrusgr 29494* | If all vertices in a simple graph have the same degree, the graph is k-regular. (Contributed by AV, 26-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾) → 𝐺 RegUSGraph 𝐾) | ||
| Theorem | fusgrregdegfi 29495* | In a nonempty finite simple graph, the degree of each vertex is finite. (Contributed by Alexander van der Vekens, 6-Mar-2018.) (Revised by AV, 19-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 → 𝐾 ∈ ℕ0)) | ||
| Theorem | fusgrn0eqdrusgr 29496* | If all vertices in a nonempty finite simple graph have the same (finite) degree, the graph is k-regular. (Contributed by AV, 26-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 → 𝐺 RegUSGraph 𝐾)) | ||
| Theorem | frusgrnn0 29497 | In a nonempty finite k-regular simple graph, the degree of each vertex is finite. (Contributed by AV, 7-May-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ≠ ∅) → 𝐾 ∈ ℕ0) | ||
| Theorem | 0edg0rgr 29498 | A graph is 0-regular if it has no edges. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
| ⊢ ((𝐺 ∈ 𝑊 ∧ (iEdg‘𝐺) = ∅) → 𝐺 RegGraph 0) | ||
| Theorem | uhgr0edg0rgr 29499 | A hypergraph is 0-regular if it has no edges. (Contributed by AV, 19-Dec-2020.) |
| ⊢ ((𝐺 ∈ UHGraph ∧ (Edg‘𝐺) = ∅) → 𝐺 RegGraph 0) | ||
| Theorem | uhgr0edg0rgrb 29500 | A hypergraph is 0-regular iff it has no edges. (Contributed by Alexander van der Vekens, 12-Jul-2018.) (Revised by AV, 24-Dec-2020.) |
| ⊢ (𝐺 ∈ UHGraph → (𝐺 RegGraph 0 ↔ (Edg‘𝐺) = ∅)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |