![]() |
Metamath
Proof Explorer Theorem List (p. 295 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | nbusgredgeu 29401* | For each neighbor of a vertex there is exactly one edge between the vertex and its neighbor in a simple graph. (Contributed by Alexander van der Vekens, 17-Dec-2017.) (Revised by AV, 27-Oct-2020.) |
⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑀 ∈ (𝐺 NeighbVtx 𝑁)) → ∃!𝑒 ∈ 𝐸 𝑒 = {𝑀, 𝑁}) | ||
Theorem | edgnbusgreu 29402* | For each edge incident to a vertex there is exactly one neighbor of the vertex also incident to this edge in a simple graph. (Contributed by AV, 28-Oct-2020.) (Revised by AV, 6-Jul-2022.) |
⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑀) ⇒ ⊢ (((𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉) ∧ (𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶)) → ∃!𝑛 ∈ 𝑁 𝐶 = {𝑀, 𝑛}) | ||
Theorem | nbusgredgeu0 29403* | For each neighbor of a vertex there is exactly one edge between the vertex and its neighbor in a simple graph. (Contributed by Alexander van der Vekens, 17-Dec-2017.) (Revised by AV, 27-Oct-2020.) (Proof shortened by AV, 13-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑈) & ⊢ 𝐼 = {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} ⇒ ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → ∃!𝑖 ∈ 𝐼 𝑖 = {𝑈, 𝑀}) | ||
Theorem | nbusgrf1o0 29404* | The mapping of neighbors of a vertex to edges incident to the vertex is a bijection ( 1-1 onto function) in a simple graph. (Contributed by Alexander van der Vekens, 17-Dec-2017.) (Revised by AV, 28-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑈) & ⊢ 𝐼 = {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} & ⊢ 𝐹 = (𝑛 ∈ 𝑁 ↦ {𝑈, 𝑛}) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → 𝐹:𝑁–1-1-onto→𝐼) | ||
Theorem | nbusgrf1o1 29405* | The set of neighbors of a vertex is isomorphic to the set of edges containing the vertex in a simple graph. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 28-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑈) & ⊢ 𝐼 = {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ∃𝑓 𝑓:𝑁–1-1-onto→𝐼) | ||
Theorem | nbusgrf1o 29406* | The set of neighbors of a vertex is isomorphic to the set of edges containing the vertex in a simple graph. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 28-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ∃𝑓 𝑓:(𝐺 NeighbVtx 𝑈)–1-1-onto→{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒}) | ||
Theorem | nbedgusgr 29407* | The number of neighbors of a vertex is the number of edges at the vertex in a simple graph. (Contributed by AV, 27-Dec-2020.) (Proof shortened by AV, 5-May-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑈)) = (♯‘{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒})) | ||
Theorem | edgusgrnbfin 29408* | The number of neighbors of a vertex in a simple graph is finite iff the number of edges having this vertex as endpoint is finite. (Contributed by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 28-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ((𝐺 NeighbVtx 𝑈) ∈ Fin ↔ {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} ∈ Fin)) | ||
Theorem | nbusgrfi 29409 | The class of neighbors of a vertex in a simple graph with a finite number of edges is a finite set. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 28-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝐸 ∈ Fin ∧ 𝑈 ∈ 𝑉) → (𝐺 NeighbVtx 𝑈) ∈ Fin) | ||
Theorem | nbfiusgrfi 29410 | The class of neighbors of a vertex in a finite simple graph is a finite set. (Contributed by Alexander van der Vekens, 7-Mar-2018.) (Revised by AV, 28-Oct-2020.) |
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ (Vtx‘𝐺)) → (𝐺 NeighbVtx 𝑁) ∈ Fin) | ||
Theorem | hashnbusgrnn0 29411 | The number of neighbors of a vertex in a finite simple graph is a nonnegative integer. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 15-Dec-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑈)) ∈ ℕ0) | ||
Theorem | nbfusgrlevtxm1 29412 | The number of neighbors of a vertex is at most the number of vertices of the graph minus 1 in a finite simple graph. (Contributed by AV, 16-Dec-2020.) (Proof shortened by AV, 13-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑈)) ≤ ((♯‘𝑉) − 1)) | ||
Theorem | nbfusgrlevtxm2 29413 | If there is a vertex which is not a neighbor of another vertex, the number of neighbors of the other vertex is at most the number of vertices of the graph minus 2 in a finite simple graph. (Contributed by AV, 16-Dec-2020.) (Proof shortened by AV, 13-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) ∧ (𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ (𝐺 NeighbVtx 𝑈))) → (♯‘(𝐺 NeighbVtx 𝑈)) ≤ ((♯‘𝑉) − 2)) | ||
Theorem | nbusgrvtxm1 29414 | If the number of neighbors of a vertex in a finite simple graph is the number of vertices of the graph minus 1, each vertex except the first mentioned vertex is a neighbor of this vertex. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 16-Dec-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → ((𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈)))) | ||
Theorem | nb3grprlem1 29415 | Lemma 1 for nb3grpr 29417. (Contributed by Alexander van der Vekens, 15-Oct-2017.) (Revised by AV, 28-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ USGraph) & ⊢ (𝜑 → 𝑉 = {𝐴, 𝐵, 𝐶}) & ⊢ (𝜑 → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍)) ⇒ ⊢ (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) | ||
Theorem | nb3grprlem2 29416* | Lemma 2 for nb3grpr 29417. (Contributed by Alexander van der Vekens, 17-Oct-2017.) (Revised by AV, 28-Oct-2020.) (Proof shortened by AV, 13-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ USGraph) & ⊢ (𝜑 → 𝑉 = {𝐴, 𝐵, 𝐶}) & ⊢ (𝜑 → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍)) & ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ⇒ ⊢ (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ∃𝑣 ∈ 𝑉 ∃𝑤 ∈ (𝑉 ∖ {𝑣})(𝐺 NeighbVtx 𝐴) = {𝑣, 𝑤})) | ||
Theorem | nb3grpr 29417* | The neighbors of a vertex in a simple graph with three elements are an unordered pair of the other vertices iff all vertices are connected with each other. (Contributed by Alexander van der Vekens, 18-Oct-2017.) (Revised by AV, 28-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ USGraph) & ⊢ (𝜑 → 𝑉 = {𝐴, 𝐵, 𝐶}) & ⊢ (𝜑 → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍)) & ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ⇒ ⊢ (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ∀𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧})) | ||
Theorem | nb3grpr2 29418 | The neighbors of a vertex in a simple graph with three elements are an unordered pair of the other vertices iff all vertices are connected with each other. (Contributed by Alexander van der Vekens, 18-Oct-2017.) (Revised by AV, 28-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ USGraph) & ⊢ (𝜑 → 𝑉 = {𝐴, 𝐵, 𝐶}) & ⊢ (𝜑 → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍)) & ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ⇒ ⊢ (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵}))) | ||
Theorem | nb3gr2nb 29419 | If the neighbors of two vertices in a graph with three elements are an unordered pair of the other vertices, the neighbors of all three vertices are an unordered pair of the other vertices. (Contributed by Alexander van der Vekens, 18-Oct-2017.) (Revised by AV, 28-Oct-2020.) |
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶}) ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵}))) | ||
Syntax | cuvtx 29420 | Extend class notation with the universal vertices (in a graph). |
class UnivVtx | ||
Definition | df-uvtx 29421* | Define the class of all universal vertices (in graphs). A vertex is called universal if it is adjacent, i.e. connected by an edge, to all other vertices (of the graph), or equivalently, if all other vertices are its neighbors. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 24-Oct-2020.) |
⊢ UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) | ||
Theorem | uvtxval 29422* | The set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 29-Oct-2020.) (Revised by AV, 14-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (UnivVtx‘𝐺) = {𝑣 ∈ 𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} | ||
Theorem | uvtxel 29423* | A universal vertex, i.e. an element of the set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 29-Oct-2020.) (Revised by AV, 14-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁 ∈ 𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁))) | ||
Theorem | uvtxisvtx 29424 | A universal vertex is a vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 30-Oct-2020.) (Proof shortened by AV, 14-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ (UnivVtx‘𝐺) → 𝑁 ∈ 𝑉) | ||
Theorem | uvtxssvtx 29425 | The set of the universal vertices is a subset of the set of all vertices. (Contributed by AV, 23-Dec-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (UnivVtx‘𝐺) ⊆ 𝑉 | ||
Theorem | vtxnbuvtx 29426* | A universal vertex has all other vertices as neighbors. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by AV, 30-Oct-2020.) (Proof shortened by AV, 14-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ (UnivVtx‘𝐺) → ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁)) | ||
Theorem | uvtxnbgrss 29427 | A universal vertex has all other vertices as neighbors. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by AV, 30-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ (UnivVtx‘𝐺) → (𝑉 ∖ {𝑁}) ⊆ (𝐺 NeighbVtx 𝑁)) | ||
Theorem | uvtxnbgrvtx 29428* | A universal vertex is neighbor of all other vertices. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by AV, 30-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ (UnivVtx‘𝐺) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑁 ∈ (𝐺 NeighbVtx 𝑣)) | ||
Theorem | uvtx0 29429 | There is no universal vertex if there is no vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 30-Oct-2020.) (Proof shortened by AV, 14-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑉 = ∅ → (UnivVtx‘𝐺) = ∅) | ||
Theorem | isuvtx 29430* | The set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 30-Oct-2020.) (Revised by AV, 14-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (UnivVtx‘𝐺) = {𝑣 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑘, 𝑣} ⊆ 𝑒} | ||
Theorem | uvtxel1 29431* | Characterization of a universal vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 14-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁 ∈ 𝑉 ∧ ∀𝑘 ∈ (𝑉 ∖ {𝑁})∃𝑒 ∈ 𝐸 {𝑘, 𝑁} ⊆ 𝑒)) | ||
Theorem | uvtx01vtx 29432 | If a graph/class has no edges, it has universal vertices if and only if it has exactly one vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 30-Oct-2020.) (Revised by AV, 14-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐸 = ∅ → ((UnivVtx‘𝐺) ≠ ∅ ↔ (♯‘𝑉) = 1)) | ||
Theorem | uvtx2vtx1edg 29433* | If a graph has two vertices, and there is an edge between the vertices, then each vertex is universal. (Contributed by AV, 1-Nov-2020.) (Revised by AV, 25-Mar-2021.) (Proof shortened by AV, 14-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((♯‘𝑉) = 2 ∧ 𝑉 ∈ 𝐸) → ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) | ||
Theorem | uvtx2vtx1edgb 29434* | If a hypergraph has two vertices, there is an edge between the vertices iff each vertex is universal. (Contributed by AV, 3-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 2) → (𝑉 ∈ 𝐸 ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) | ||
Theorem | uvtxnbgr 29435 | A universal vertex has all other vertices as neighbors. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 23-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ (UnivVtx‘𝐺) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) | ||
Theorem | uvtxnbgrb 29436 | A vertex is universal iff all the other vertices are its neighbors. (Contributed by Alexander van der Vekens, 13-Jul-2018.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 14-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))) | ||
Theorem | uvtxusgr 29437* | The set of all universal vertices of a simple graph. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 31-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ USGraph → (UnivVtx‘𝐺) = {𝑛 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑛}){𝑘, 𝑛} ∈ 𝐸}) | ||
Theorem | uvtxusgrel 29438* | A universal vertex, i.e. an element of the set of all universal vertices, of a simple graph. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 31-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ USGraph → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁 ∈ 𝑉 ∧ ∀𝑘 ∈ (𝑉 ∖ {𝑁}){𝑘, 𝑁} ∈ 𝐸))) | ||
Theorem | uvtxnm1nbgr 29439 | A universal vertex has 𝑛 − 1 neighbors in a finite graph with 𝑛 vertices. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by AV, 3-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ (UnivVtx‘𝐺)) → (♯‘(𝐺 NeighbVtx 𝑁)) = ((♯‘𝑉) − 1)) | ||
Theorem | nbusgrvtxm1uvtx 29440 | If the number of neighbors of a vertex in a finite simple graph is the number of vertices of the graph minus 1, the vertex is universal. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 16-Dec-2020.) (Proof shortened by AV, 13-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → 𝑈 ∈ (UnivVtx‘𝐺))) | ||
Theorem | uvtxnbvtxm1 29441 | A universal vertex has 𝑛 − 1 neighbors in a finite simple graph with 𝑛 vertices. A biconditional version of nbusgrvtxm1uvtx 29440 resp. uvtxnm1nbgr 29439. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 16-Dec-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) → (𝑈 ∈ (UnivVtx‘𝐺) ↔ (♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1))) | ||
Theorem | nbupgruvtxres 29442* | The neighborhood of a universal vertex in a restricted pseudograph. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 8-Nov-2020.) (Proof shortened by AV, 13-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} & ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 ⇒ ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → ((𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾}) → (𝑆 NeighbVtx 𝐾) = (𝑉 ∖ {𝑁, 𝐾}))) | ||
Theorem | uvtxupgrres 29443* | A universal vertex is universal in a restricted pseudograph. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 8-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} & ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 ⇒ ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → (𝐾 ∈ (UnivVtx‘𝐺) → 𝐾 ∈ (UnivVtx‘𝑆))) | ||
Syntax | ccplgr 29444 | Extend class notation with (arbitrary) complete graphs. |
class ComplGraph | ||
Syntax | ccusgr 29445 | Extend class notation with complete simple graphs. |
class ComplUSGraph | ||
Definition | df-cplgr 29446 | Define the class of all complete "graphs". A class/graph is called complete if every pair of distinct vertices is connected by an edge, i.e., each vertex has all other vertices as neighbors or, in other words, each vertex is a universal vertex. (Contributed by AV, 24-Oct-2020.) (Revised by TA, 15-Feb-2022.) |
⊢ ComplGraph = {𝑔 ∣ (UnivVtx‘𝑔) = (Vtx‘𝑔)} | ||
Definition | df-cusgr 29447 | Define the class of all complete simple graphs. A simple graph is called complete if every pair of distinct vertices is connected by a (unique) edge, see definition in section 1.1 of [Diestel] p. 3. In contrast, the definition in section I.1 of [Bollobas] p. 3 is based on the size of (finite) complete graphs, see cusgrsize 29490. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 24-Oct-2020.) (Revised by BJ, 14-Feb-2022.) |
⊢ ComplUSGraph = (USGraph ∩ ComplGraph) | ||
Theorem | cplgruvtxb 29448 | A graph 𝐺 is complete iff each vertex is a universal vertex. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by AV, 15-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉)) | ||
Theorem | prcliscplgr 29449* | A proper class (representing a null graph, see vtxvalprc 29080) has the property of a complete graph (see also cplgr0v 29462), but cannot be an element of ComplGraph, of course. Because of this, a sethood antecedent like 𝐺 ∈ 𝑊 is necessary in the following theorems like iscplgr 29450. (Contributed by AV, 14-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (¬ 𝐺 ∈ V → ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) | ||
Theorem | iscplgr 29450* | The property of being a complete graph. (Contributed by AV, 1-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) | ||
Theorem | iscplgrnb 29451* | A graph is complete iff all vertices are neighbors of all vertices. (Contributed by AV, 1-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) | ||
Theorem | iscplgredg 29452* | A graph 𝐺 is complete iff all vertices are connected with each other by (at least) one edge. (Contributed by AV, 10-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) | ||
Theorem | iscusgr 29453 | The property of being a complete simple graph. (Contributed by AV, 1-Nov-2020.) |
⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) | ||
Theorem | cusgrusgr 29454 | A complete simple graph is a simple graph. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.) |
⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph) | ||
Theorem | cusgrcplgr 29455 | A complete simple graph is a complete graph. (Contributed by AV, 1-Nov-2020.) |
⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph) | ||
Theorem | iscusgrvtx 29456* | A simple graph is complete iff all vertices are uniuversal. (Contributed by AV, 1-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) | ||
Theorem | cusgruvtxb 29457 | A simple graph is complete iff the set of vertices is the set of universal vertices. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by Alexander van der Vekens, 18-Jan-2018.) (Revised by AV, 1-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ ComplUSGraph ↔ (UnivVtx‘𝐺) = 𝑉)) | ||
Theorem | iscusgredg 29458* | A simple graph is complete iff all vertices are connected by an edge. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 1-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐸)) | ||
Theorem | cusgredg 29459* | In a complete simple graph, the edges are all the pairs of different vertices. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 1-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ ComplUSGraph → 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) | ||
Theorem | cplgr0 29460 | The null graph (with no vertices and no edges) represented by the empty set is a complete graph. (Contributed by AV, 1-Nov-2020.) |
⊢ ∅ ∈ ComplGraph | ||
Theorem | cusgr0 29461 | The null graph (with no vertices and no edges) represented by the empty set is a complete simple graph. (Contributed by AV, 1-Nov-2020.) |
⊢ ∅ ∈ ComplUSGraph | ||
Theorem | cplgr0v 29462 | A null graph (with no vertices) is a complete graph. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑉 = ∅) → 𝐺 ∈ ComplGraph) | ||
Theorem | cusgr0v 29463 | A graph with no vertices and no edges is a complete simple graph. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑉 = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ ComplUSGraph) | ||
Theorem | cplgr1vlem 29464 | Lemma for cplgr1v 29465 and cusgr1v 29466. (Contributed by AV, 23-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((♯‘𝑉) = 1 → 𝐺 ∈ V) | ||
Theorem | cplgr1v 29465 | A graph with one vertex is complete. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 14-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((♯‘𝑉) = 1 → 𝐺 ∈ ComplGraph) | ||
Theorem | cusgr1v 29466 | A graph with one vertex and no edges is a complete simple graph. (Contributed by AV, 1-Nov-2020.) (Revised by AV, 23-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((♯‘𝑉) = 1 ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ ComplUSGraph) | ||
Theorem | cplgr2v 29467 | An undirected hypergraph with two (different) vertices is complete iff there is an edge between these two vertices. (Contributed by AV, 3-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 2) → (𝐺 ∈ ComplGraph ↔ 𝑉 ∈ 𝐸)) | ||
Theorem | cplgr2vpr 29468 | An undirected hypergraph with two (different) vertices is complete iff there is an edge between these two vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Proof shortened by Alexander van der Vekens, 16-Dec-2017.) (Revised by AV, 3-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝐺 ∈ UHGraph ∧ 𝑉 = {𝐴, 𝐵})) → (𝐺 ∈ ComplGraph ↔ {𝐴, 𝐵} ∈ 𝐸)) | ||
Theorem | nbcplgr 29469 | In a complete graph, each vertex has all other vertices as neighbors. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 3-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ ComplGraph ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) | ||
Theorem | cplgr3v 29470 | A pseudograph with three (different) vertices is complete iff there is an edge between each of these three vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 5-Nov-2020.) (Proof shortened by AV, 13-Feb-2022.) |
⊢ 𝐸 = (Edg‘𝐺) & ⊢ (Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ⇒ ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → (𝐺 ∈ ComplGraph ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸))) | ||
Theorem | cusgr3vnbpr 29471* | The neighbors of a vertex in a simple graph with three elements are unordered pairs of the other vertices if and only if the graph is complete. (Contributed by Alexander van der Vekens, 18-Oct-2017.) (Revised by AV, 5-Nov-2020.) |
⊢ 𝐸 = (Edg‘𝐺) & ⊢ (Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ 𝐺 ∈ USGraph ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → (𝐺 ∈ ComplGraph ↔ ∀𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧})) | ||
Theorem | cplgrop 29472 | A complete graph represented by an ordered pair. (Contributed by AV, 10-Nov-2020.) |
⊢ (𝐺 ∈ ComplGraph → 〈(Vtx‘𝐺), (iEdg‘𝐺)〉 ∈ ComplGraph) | ||
Theorem | cusgrop 29473 | A complete simple graph represented by an ordered pair. (Contributed by AV, 10-Nov-2020.) |
⊢ (𝐺 ∈ ComplUSGraph → 〈(Vtx‘𝐺), (iEdg‘𝐺)〉 ∈ ComplUSGraph) | ||
Theorem | cusgrexilem1 29474* | Lemma 1 for cusgrexi 29478. (Contributed by Alexander van der Vekens, 12-Jan-2018.) |
⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⇒ ⊢ (𝑉 ∈ 𝑊 → ( I ↾ 𝑃) ∈ V) | ||
Theorem | usgrexilem 29475* | Lemma for usgrexi 29476. (Contributed by AV, 12-Jan-2018.) (Revised by AV, 10-Nov-2021.) |
⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⇒ ⊢ (𝑉 ∈ 𝑊 → ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) | ||
Theorem | usgrexi 29476* | An arbitrary set regarded as vertices together with the set of pairs of elements of this set regarded as edges is a simple graph. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 5-Nov-2020.) (Proof shortened by AV, 10-Nov-2021.) |
⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⇒ ⊢ (𝑉 ∈ 𝑊 → 〈𝑉, ( I ↾ 𝑃)〉 ∈ USGraph) | ||
Theorem | cusgrexilem2 29477* | Lemma 2 for cusgrexi 29478. (Contributed by AV, 12-Jan-2018.) (Revised by AV, 10-Nov-2021.) |
⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⇒ ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒) | ||
Theorem | cusgrexi 29478* | An arbitrary set 𝑉 regarded as set of vertices together with the set of pairs of elements of this set regarded as edges is a complete simple graph. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 5-Nov-2020.) (Proof shortened by AV, 14-Feb-2022.) |
⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⇒ ⊢ (𝑉 ∈ 𝑊 → 〈𝑉, ( I ↾ 𝑃)〉 ∈ ComplUSGraph) | ||
Theorem | cusgrexg 29479* | For each set there is a set of edges so that the set together with these edges is a complete simple graph. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 5-Nov-2020.) |
⊢ (𝑉 ∈ 𝑊 → ∃𝑒〈𝑉, 𝑒〉 ∈ ComplUSGraph) | ||
Theorem | structtousgr 29480* | Any (extensible) structure with a base set can be made a simple graph with the set of pairs of elements of the base set regarded as edges. (Contributed by AV, 10-Nov-2021.) (Revised by AV, 17-Nov-2021.) |
⊢ 𝑃 = {𝑥 ∈ 𝒫 (Base‘𝑆) ∣ (♯‘𝑥) = 2} & ⊢ (𝜑 → 𝑆 Struct 𝑋) & ⊢ 𝐺 = (𝑆 sSet 〈(.ef‘ndx), ( I ↾ 𝑃)〉) & ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝑆) ⇒ ⊢ (𝜑 → 𝐺 ∈ USGraph) | ||
Theorem | structtocusgr 29481* | Any (extensible) structure with a base set can be made a complete simple graph with the set of pairs of elements of the base set regarded as edges. (Contributed by AV, 10-Nov-2021.) (Revised by AV, 17-Nov-2021.) (Proof shortened by AV, 14-Feb-2022.) |
⊢ 𝑃 = {𝑥 ∈ 𝒫 (Base‘𝑆) ∣ (♯‘𝑥) = 2} & ⊢ (𝜑 → 𝑆 Struct 𝑋) & ⊢ 𝐺 = (𝑆 sSet 〈(.ef‘ndx), ( I ↾ 𝑃)〉) & ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝑆) ⇒ ⊢ (𝜑 → 𝐺 ∈ ComplUSGraph) | ||
Theorem | cffldtocusgr 29482* | The field of complex numbers can be made a complete simple graph with the set of pairs of complex numbers regarded as edges. This theorem demonstrates the capabilities of the current definitions for graphs applied to extensible structures. (Contributed by AV, 14-Nov-2021.) (Proof shortened by AV, 17-Nov-2021.) Revise df-cnfld 21388. (Revised by GG, 31-Mar-2025.) |
⊢ 𝑃 = {𝑥 ∈ 𝒫 ℂ ∣ (♯‘𝑥) = 2} & ⊢ 𝐺 = (ℂfld sSet 〈(.ef‘ndx), ( I ↾ 𝑃)〉) ⇒ ⊢ 𝐺 ∈ ComplUSGraph | ||
Theorem | cffldtocusgrOLD 29483* | Obsolete version of cffldtocusgr 29482 as of 27-Apr-2025. (Contributed by AV, 14-Nov-2021.) (Proof shortened by AV, 17-Nov-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑃 = {𝑥 ∈ 𝒫 ℂ ∣ (♯‘𝑥) = 2} & ⊢ 𝐺 = (ℂfld sSet 〈(.ef‘ndx), ( I ↾ 𝑃)〉) ⇒ ⊢ 𝐺 ∈ ComplUSGraph | ||
Theorem | cusgrres 29484* | Restricting a complete simple graph. (Contributed by Alexander van der Vekens, 2-Jan-2018.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} & ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 ⇒ ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ ComplUSGraph) | ||
Theorem | cusgrsizeindb0 29485 | Base case of the induction in cusgrsize 29490. The size of a complete simple graph with 0 vertices, actually of every null graph, is 0=((0-1)*0)/2. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 7-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 0) → (♯‘𝐸) = ((♯‘𝑉)C2)) | ||
Theorem | cusgrsizeindb1 29486 | Base case of the induction in cusgrsize 29490. The size of a (complete) simple graph with 1 vertex is 0=((1-1)*1)/2. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 7-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 1) → (♯‘𝐸) = ((♯‘𝑉)C2)) | ||
Theorem | cusgrsizeindslem 29487* | Lemma for cusgrsizeinds 29488. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) = ((♯‘𝑉) − 1)) | ||
Theorem | cusgrsizeinds 29488* | Part 1 of induction step in cusgrsize 29490. The size of a complete simple graph with 𝑛 vertices is (𝑛 − 1) plus the size of the complete graph reduced by one vertex. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} ⇒ ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹))) | ||
Theorem | cusgrsize2inds 29489* | Induction step in cusgrsize 29490. If the size of the complete graph with 𝑛 vertices reduced by one vertex is "(𝑛 − 1) choose 2", the size of the complete graph with 𝑛 vertices is "𝑛 choose 2". (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} ⇒ ⊢ (𝑌 ∈ ℕ0 → ((𝐺 ∈ ComplUSGraph ∧ (♯‘𝑉) = 𝑌 ∧ 𝑁 ∈ 𝑉) → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))) | ||
Theorem | cusgrsize 29490 | The size of a finite complete simple graph with 𝑛 vertices (𝑛 ∈ ℕ0) is (𝑛C2) ("𝑛 choose 2") resp. (((𝑛 − 1)∗𝑛) / 2), see definition in section I.1 of [Bollobas] p. 3 . (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 10-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (♯‘𝐸) = ((♯‘𝑉)C2)) | ||
Theorem | cusgrfilem1 29491* | Lemma 1 for cusgrfi 29494. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} ⇒ ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑃 ⊆ (Edg‘𝐺)) | ||
Theorem | cusgrfilem2 29492* | Lemma 2 for cusgrfi 29494. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} & ⊢ 𝐹 = (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) ⇒ ⊢ (𝑁 ∈ 𝑉 → 𝐹:(𝑉 ∖ {𝑁})–1-1-onto→𝑃) | ||
Theorem | cusgrfilem3 29493* | Lemma 3 for cusgrfi 29494. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} & ⊢ 𝐹 = (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝑉 ∈ Fin ↔ 𝑃 ∈ Fin)) | ||
Theorem | cusgrfi 29494 | If the size of a complete simple graph is finite, then its order is also finite. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝐸 ∈ Fin) → 𝑉 ∈ Fin) | ||
Theorem | usgredgsscusgredg 29495 | A simple graph is a subgraph of a complete simple graph. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 13-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐻) & ⊢ 𝐹 = (Edg‘𝐻) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → 𝐸 ⊆ 𝐹) | ||
Theorem | usgrsscusgr 29496* | A simple graph is a subgraph of a complete simple graph. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 13-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐻) & ⊢ 𝐹 = (Edg‘𝐻) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → ∀𝑒 ∈ 𝐸 ∃𝑓 ∈ 𝐹 𝑒 = 𝑓) | ||
Theorem | sizusglecusglem1 29497 | Lemma 1 for sizusglecusg 29499. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 13-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐻) & ⊢ 𝐹 = (Edg‘𝐻) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → ( I ↾ 𝐸):𝐸–1-1→𝐹) | ||
Theorem | sizusglecusglem2 29498 | Lemma 2 for sizusglecusg 29499. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 13-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐻) & ⊢ 𝐹 = (Edg‘𝐻) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ∧ 𝐹 ∈ Fin) → 𝐸 ∈ Fin) | ||
Theorem | sizusglecusg 29499 | The size of a simple graph with 𝑛 vertices is at most the size of a complete simple graph with 𝑛 vertices (𝑛 may be infinite). (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 13-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐻) & ⊢ 𝐹 = (Edg‘𝐻) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹)) | ||
Theorem | fusgrmaxsize 29500 | The maximum size of a finite simple graph with 𝑛 vertices is (((𝑛 − 1)∗𝑛) / 2). See statement in section I.1 of [Bollobas] p. 3 . (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 14-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ FinUSGraph → (♯‘𝐸) ≤ ((♯‘𝑉)C2)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |