MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkonprop Structured version   Visualization version   GIF version

Theorem wlkonprop 28227
Description: Properties of a walk between two vertices. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 31-Dec-2020.) (Proof shortened by AV, 16-Jan-2021.)
Hypothesis
Ref Expression
wlkson.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wlkonprop (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))

Proof of Theorem wlkonprop
Dummy variables 𝑎 𝑏 𝑓 𝑔 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wlkson.v . . . . . 6 𝑉 = (Vtx‘𝐺)
21fvexi 6833 . . . . 5 𝑉 ∈ V
3 df-wlkson 28169 . . . . . 6 WalksOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏)}))
41wlkson 28225 . . . . . . 7 ((𝐴𝑉𝐵𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵)})
543adant1 1129 . . . . . 6 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵)})
6 fveq2 6819 . . . . . . 7 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
76, 1eqtr4di 2794 . . . . . 6 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
8 fveq2 6819 . . . . . . . 8 (𝑔 = 𝐺 → (Walks‘𝑔) = (Walks‘𝐺))
98breqd 5100 . . . . . . 7 (𝑔 = 𝐺 → (𝑓(Walks‘𝑔)𝑝𝑓(Walks‘𝐺)𝑝))
1093anbi1d 1439 . . . . . 6 (𝑔 = 𝐺 → ((𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ↔ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏)))
113, 5, 7, 7, 10bropfvvvv 7992 . . . . 5 ((𝑉 ∈ V ∧ 𝑉 ∈ V) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → (𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))))
122, 2, 11mp2an 689 . . . 4 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → (𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
13 3anass 1094 . . . . . 6 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ↔ (𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉)))
1413anbi1i 624 . . . . 5 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ↔ ((𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
15 df-3an 1088 . . . . 5 ((𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ↔ ((𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
1614, 15bitr4i 277 . . . 4 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ↔ (𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
1712, 16sylibr 233 . . 3 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
181iswlkon 28226 . . . . . 6 (((𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
19183adantl1 1165 . . . . 5 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
2019biimpd 228 . . . 4 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
2120imdistani 569 . . 3 ((((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ 𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃) → (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
2217, 21mpancom 685 . 2 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
23 df-3an 1088 . 2 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ↔ (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
2422, 23sylibr 233 1 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  Vcvv 3441   class class class wbr 5089  {copab 5151  cfv 6473  (class class class)co 7329  0cc0 10964  chash 14137  Vtxcvtx 27568  Walkscwlks 28165  WalksOncwlkson 28166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-ov 7332  df-oprab 7333  df-mpo 7334  df-1st 7891  df-2nd 7892  df-wlkson 28169
This theorem is referenced by:  wlkoniswlk  28230  wlksoneq1eq2  28233  wlkonl1iedg  28234  wlkon2n0  28235  spthonepeq  28321  uhgrwkspth  28324  usgr2wlkspth  28328
  Copyright terms: Public domain W3C validator