MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkson Structured version   Visualization version   GIF version

Theorem wlkson 28944
Description: The set of walks between two vertices. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 30-Dec-2020.) (Revised by AV, 22-Mar-2021.)
Hypothesis
Ref Expression
wlkson.v 𝑉 = (Vtxβ€˜πΊ)
Assertion
Ref Expression
wlkson ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ (𝐴(WalksOnβ€˜πΊ)𝐡) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = 𝐴 ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝐡)})
Distinct variable groups:   𝐴,𝑓,𝑝   𝐡,𝑓,𝑝   𝑓,𝐺,𝑝   𝑓,𝑉,𝑝

Proof of Theorem wlkson
Dummy variables π‘Ž 𝑏 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wlkson.v . . . . 5 𝑉 = (Vtxβ€˜πΊ)
211vgrex 28293 . . . 4 (𝐴 ∈ 𝑉 β†’ 𝐺 ∈ V)
32adantr 482 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ 𝐺 ∈ V)
4 simpl 484 . . . 4 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ 𝐴 ∈ 𝑉)
54, 1eleqtrdi 2844 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ 𝐴 ∈ (Vtxβ€˜πΊ))
6 simpr 486 . . . 4 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ 𝐡 ∈ 𝑉)
76, 1eleqtrdi 2844 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ 𝐡 ∈ (Vtxβ€˜πΊ))
8 eqeq2 2745 . . . 4 (π‘Ž = 𝐴 β†’ ((π‘β€˜0) = π‘Ž ↔ (π‘β€˜0) = 𝐴))
9 eqeq2 2745 . . . 4 (𝑏 = 𝐡 β†’ ((π‘β€˜(β™―β€˜π‘“)) = 𝑏 ↔ (π‘β€˜(β™―β€˜π‘“)) = 𝐡))
108, 9bi2anan9 638 . . 3 ((π‘Ž = 𝐴 ∧ 𝑏 = 𝐡) β†’ (((π‘β€˜0) = π‘Ž ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝑏) ↔ ((π‘β€˜0) = 𝐴 ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝐡)))
11 biidd 262 . . 3 (𝑔 = 𝐺 β†’ (((π‘β€˜0) = π‘Ž ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝑏) ↔ ((π‘β€˜0) = π‘Ž ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝑏)))
12 df-wlkson 28888 . . . 4 WalksOn = (𝑔 ∈ V ↦ (π‘Ž ∈ (Vtxβ€˜π‘”), 𝑏 ∈ (Vtxβ€˜π‘”) ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜π‘”)𝑝 ∧ (π‘β€˜0) = π‘Ž ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝑏)}))
13 eqid 2733 . . . . . 6 (Vtxβ€˜π‘”) = (Vtxβ€˜π‘”)
14 3anass 1096 . . . . . . . 8 ((𝑓(Walksβ€˜π‘”)𝑝 ∧ (π‘β€˜0) = π‘Ž ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝑏) ↔ (𝑓(Walksβ€˜π‘”)𝑝 ∧ ((π‘β€˜0) = π‘Ž ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝑏)))
1514biancomi 464 . . . . . . 7 ((𝑓(Walksβ€˜π‘”)𝑝 ∧ (π‘β€˜0) = π‘Ž ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝑏) ↔ (((π‘β€˜0) = π‘Ž ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝑏) ∧ 𝑓(Walksβ€˜π‘”)𝑝))
1615opabbii 5216 . . . . . 6 {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜π‘”)𝑝 ∧ (π‘β€˜0) = π‘Ž ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝑏)} = {βŸ¨π‘“, π‘βŸ© ∣ (((π‘β€˜0) = π‘Ž ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝑏) ∧ 𝑓(Walksβ€˜π‘”)𝑝)}
1713, 13, 16mpoeq123i 7485 . . . . 5 (π‘Ž ∈ (Vtxβ€˜π‘”), 𝑏 ∈ (Vtxβ€˜π‘”) ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜π‘”)𝑝 ∧ (π‘β€˜0) = π‘Ž ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝑏)}) = (π‘Ž ∈ (Vtxβ€˜π‘”), 𝑏 ∈ (Vtxβ€˜π‘”) ↦ {βŸ¨π‘“, π‘βŸ© ∣ (((π‘β€˜0) = π‘Ž ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝑏) ∧ 𝑓(Walksβ€˜π‘”)𝑝)})
1817mpteq2i 5254 . . . 4 (𝑔 ∈ V ↦ (π‘Ž ∈ (Vtxβ€˜π‘”), 𝑏 ∈ (Vtxβ€˜π‘”) ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜π‘”)𝑝 ∧ (π‘β€˜0) = π‘Ž ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝑏)})) = (𝑔 ∈ V ↦ (π‘Ž ∈ (Vtxβ€˜π‘”), 𝑏 ∈ (Vtxβ€˜π‘”) ↦ {βŸ¨π‘“, π‘βŸ© ∣ (((π‘β€˜0) = π‘Ž ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝑏) ∧ 𝑓(Walksβ€˜π‘”)𝑝)}))
1912, 18eqtri 2761 . . 3 WalksOn = (𝑔 ∈ V ↦ (π‘Ž ∈ (Vtxβ€˜π‘”), 𝑏 ∈ (Vtxβ€˜π‘”) ↦ {βŸ¨π‘“, π‘βŸ© ∣ (((π‘β€˜0) = π‘Ž ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝑏) ∧ 𝑓(Walksβ€˜π‘”)𝑝)}))
203, 5, 7, 10, 11, 19mptmpoopabbrd 8067 . 2 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ (𝐴(WalksOnβ€˜πΊ)𝐡) = {βŸ¨π‘“, π‘βŸ© ∣ (((π‘β€˜0) = 𝐴 ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝐡) ∧ 𝑓(Walksβ€˜πΊ)𝑝)})
21 ancom 462 . . . 4 ((((π‘β€˜0) = 𝐴 ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝐡) ∧ 𝑓(Walksβ€˜πΊ)𝑝) ↔ (𝑓(Walksβ€˜πΊ)𝑝 ∧ ((π‘β€˜0) = 𝐴 ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝐡)))
22 3anass 1096 . . . 4 ((𝑓(Walksβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = 𝐴 ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝐡) ↔ (𝑓(Walksβ€˜πΊ)𝑝 ∧ ((π‘β€˜0) = 𝐴 ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝐡)))
2321, 22bitr4i 278 . . 3 ((((π‘β€˜0) = 𝐴 ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝐡) ∧ 𝑓(Walksβ€˜πΊ)𝑝) ↔ (𝑓(Walksβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = 𝐴 ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝐡))
2423opabbii 5216 . 2 {βŸ¨π‘“, π‘βŸ© ∣ (((π‘β€˜0) = 𝐴 ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝐡) ∧ 𝑓(Walksβ€˜πΊ)𝑝)} = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = 𝐴 ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝐡)}
2520, 24eqtrdi 2789 1 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ (𝐴(WalksOnβ€˜πΊ)𝐡) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = 𝐴 ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝐡)})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  Vcvv 3475   class class class wbr 5149  {copab 5211   ↦ cmpt 5232  β€˜cfv 6544  (class class class)co 7409   ∈ cmpo 7411  0cc0 11110  β™―chash 14290  Vtxcvtx 28287  Walkscwlks 28884  WalksOncwlkson 28885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-wlkson 28888
This theorem is referenced by:  iswlkon  28945  wlkonprop  28946
  Copyright terms: Public domain W3C validator