Step | Hyp | Ref
| Expression |
1 | | wlkson.v |
. . . . 5
β’ π = (VtxβπΊ) |
2 | 1 | 1vgrex 28251 |
. . . 4
β’ (π΄ β π β πΊ β V) |
3 | 2 | adantr 481 |
. . 3
β’ ((π΄ β π β§ π΅ β π) β πΊ β V) |
4 | | simpl 483 |
. . . 4
β’ ((π΄ β π β§ π΅ β π) β π΄ β π) |
5 | 4, 1 | eleqtrdi 2843 |
. . 3
β’ ((π΄ β π β§ π΅ β π) β π΄ β (VtxβπΊ)) |
6 | | simpr 485 |
. . . 4
β’ ((π΄ β π β§ π΅ β π) β π΅ β π) |
7 | 6, 1 | eleqtrdi 2843 |
. . 3
β’ ((π΄ β π β§ π΅ β π) β π΅ β (VtxβπΊ)) |
8 | | eqeq2 2744 |
. . . 4
β’ (π = π΄ β ((πβ0) = π β (πβ0) = π΄)) |
9 | | eqeq2 2744 |
. . . 4
β’ (π = π΅ β ((πβ(β―βπ)) = π β (πβ(β―βπ)) = π΅)) |
10 | 8, 9 | bi2anan9 637 |
. . 3
β’ ((π = π΄ β§ π = π΅) β (((πβ0) = π β§ (πβ(β―βπ)) = π) β ((πβ0) = π΄ β§ (πβ(β―βπ)) = π΅))) |
11 | | biidd 261 |
. . 3
β’ (π = πΊ β (((πβ0) = π β§ (πβ(β―βπ)) = π) β ((πβ0) = π β§ (πβ(β―βπ)) = π))) |
12 | | df-wlkson 28846 |
. . . 4
β’ WalksOn =
(π β V β¦ (π β (Vtxβπ), π β (Vtxβπ) β¦ {β¨π, πβ© β£ (π(Walksβπ)π β§ (πβ0) = π β§ (πβ(β―βπ)) = π)})) |
13 | | eqid 2732 |
. . . . . 6
β’
(Vtxβπ) =
(Vtxβπ) |
14 | | 3anass 1095 |
. . . . . . . 8
β’ ((π(Walksβπ)π β§ (πβ0) = π β§ (πβ(β―βπ)) = π) β (π(Walksβπ)π β§ ((πβ0) = π β§ (πβ(β―βπ)) = π))) |
15 | 14 | biancomi 463 |
. . . . . . 7
β’ ((π(Walksβπ)π β§ (πβ0) = π β§ (πβ(β―βπ)) = π) β (((πβ0) = π β§ (πβ(β―βπ)) = π) β§ π(Walksβπ)π)) |
16 | 15 | opabbii 5214 |
. . . . . 6
β’
{β¨π, πβ© β£ (π(Walksβπ)π β§ (πβ0) = π β§ (πβ(β―βπ)) = π)} = {β¨π, πβ© β£ (((πβ0) = π β§ (πβ(β―βπ)) = π) β§ π(Walksβπ)π)} |
17 | 13, 13, 16 | mpoeq123i 7481 |
. . . . 5
β’ (π β (Vtxβπ), π β (Vtxβπ) β¦ {β¨π, πβ© β£ (π(Walksβπ)π β§ (πβ0) = π β§ (πβ(β―βπ)) = π)}) = (π β (Vtxβπ), π β (Vtxβπ) β¦ {β¨π, πβ© β£ (((πβ0) = π β§ (πβ(β―βπ)) = π) β§ π(Walksβπ)π)}) |
18 | 17 | mpteq2i 5252 |
. . . 4
β’ (π β V β¦ (π β (Vtxβπ), π β (Vtxβπ) β¦ {β¨π, πβ© β£ (π(Walksβπ)π β§ (πβ0) = π β§ (πβ(β―βπ)) = π)})) = (π β V β¦ (π β (Vtxβπ), π β (Vtxβπ) β¦ {β¨π, πβ© β£ (((πβ0) = π β§ (πβ(β―βπ)) = π) β§ π(Walksβπ)π)})) |
19 | 12, 18 | eqtri 2760 |
. . 3
β’ WalksOn =
(π β V β¦ (π β (Vtxβπ), π β (Vtxβπ) β¦ {β¨π, πβ© β£ (((πβ0) = π β§ (πβ(β―βπ)) = π) β§ π(Walksβπ)π)})) |
20 | 3, 5, 7, 10, 11, 19 | mptmpoopabbrd 8063 |
. 2
β’ ((π΄ β π β§ π΅ β π) β (π΄(WalksOnβπΊ)π΅) = {β¨π, πβ© β£ (((πβ0) = π΄ β§ (πβ(β―βπ)) = π΅) β§ π(WalksβπΊ)π)}) |
21 | | ancom 461 |
. . . 4
β’ ((((πβ0) = π΄ β§ (πβ(β―βπ)) = π΅) β§ π(WalksβπΊ)π) β (π(WalksβπΊ)π β§ ((πβ0) = π΄ β§ (πβ(β―βπ)) = π΅))) |
22 | | 3anass 1095 |
. . . 4
β’ ((π(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπ)) = π΅) β (π(WalksβπΊ)π β§ ((πβ0) = π΄ β§ (πβ(β―βπ)) = π΅))) |
23 | 21, 22 | bitr4i 277 |
. . 3
β’ ((((πβ0) = π΄ β§ (πβ(β―βπ)) = π΅) β§ π(WalksβπΊ)π) β (π(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπ)) = π΅)) |
24 | 23 | opabbii 5214 |
. 2
β’
{β¨π, πβ© β£ (((πβ0) = π΄ β§ (πβ(β―βπ)) = π΅) β§ π(WalksβπΊ)π)} = {β¨π, πβ© β£ (π(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπ)) = π΅)} |
25 | 20, 24 | eqtrdi 2788 |
1
β’ ((π΄ β π β§ π΅ β π) β (π΄(WalksOnβπΊ)π΅) = {β¨π, πβ© β£ (π(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπ)) = π΅)}) |