![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkson | Structured version Visualization version GIF version |
Description: The set of walks between two vertices. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 30-Dec-2020.) (Revised by AV, 22-Mar-2021.) |
Ref | Expression |
---|---|
wlkson.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
wlkson | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkson.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | 1vgrex 26350 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ V) |
3 | 2 | adantr 474 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐺 ∈ V) |
4 | simpl 476 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
5 | 4, 1 | syl6eleq 2868 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ (Vtx‘𝐺)) |
6 | simpr 479 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
7 | 6, 1 | syl6eleq 2868 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ (Vtx‘𝐺)) |
8 | wksv 26967 | . . . 4 ⊢ {〈𝑓, 𝑝〉 ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V | |
9 | 8 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → {〈𝑓, 𝑝〉 ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V) |
10 | simpr 479 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑓(Walks‘𝐺)𝑝) → 𝑓(Walks‘𝐺)𝑝) | |
11 | eqeq2 2788 | . . . 4 ⊢ (𝑎 = 𝐴 → ((𝑝‘0) = 𝑎 ↔ (𝑝‘0) = 𝐴)) | |
12 | eqeq2 2788 | . . . 4 ⊢ (𝑏 = 𝐵 → ((𝑝‘(♯‘𝑓)) = 𝑏 ↔ (𝑝‘(♯‘𝑓)) = 𝐵)) | |
13 | 11, 12 | bi2anan9 629 | . . 3 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ↔ ((𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵))) |
14 | biidd 254 | . . 3 ⊢ (𝑔 = 𝐺 → (((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ↔ ((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏))) | |
15 | df-wlkson 26948 | . . . 4 ⊢ WalksOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏)})) | |
16 | eqid 2777 | . . . . . 6 ⊢ (Vtx‘𝑔) = (Vtx‘𝑔) | |
17 | 3anass 1079 | . . . . . . . 8 ⊢ ((𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ↔ (𝑓(Walks‘𝑔)𝑝 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏))) | |
18 | ancom 454 | . . . . . . . 8 ⊢ ((𝑓(Walks‘𝑔)𝑝 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏)) ↔ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)) | |
19 | 17, 18 | bitri 267 | . . . . . . 7 ⊢ ((𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ↔ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)) |
20 | 19 | opabbii 4953 | . . . . . 6 ⊢ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏)} = {〈𝑓, 𝑝〉 ∣ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)} |
21 | 16, 16, 20 | mpt2eq123i 6995 | . . . . 5 ⊢ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏)}) = (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)}) |
22 | 21 | mpteq2i 4976 | . . . 4 ⊢ (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏)})) = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)})) |
23 | 15, 22 | eqtri 2801 | . . 3 ⊢ WalksOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)})) |
24 | 3, 5, 7, 9, 10, 13, 14, 23 | mptmpt2opabbrd 7528 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {〈𝑓, 𝑝〉 ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵) ∧ 𝑓(Walks‘𝐺)𝑝)}) |
25 | ancom 454 | . . . 4 ⊢ ((((𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵) ∧ 𝑓(Walks‘𝐺)𝑝) ↔ (𝑓(Walks‘𝐺)𝑝 ∧ ((𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵))) | |
26 | 3anass 1079 | . . . 4 ⊢ ((𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵) ↔ (𝑓(Walks‘𝐺)𝑝 ∧ ((𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵))) | |
27 | 25, 26 | bitr4i 270 | . . 3 ⊢ ((((𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵) ∧ 𝑓(Walks‘𝐺)𝑝) ↔ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵)) |
28 | 27 | opabbii 4953 | . 2 ⊢ {〈𝑓, 𝑝〉 ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵) ∧ 𝑓(Walks‘𝐺)𝑝)} = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵)} |
29 | 24, 28 | syl6eq 2829 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2106 Vcvv 3397 class class class wbr 4886 {copab 4948 ↦ cmpt 4965 ‘cfv 6135 (class class class)co 6922 ↦ cmpt2 6924 0cc0 10272 ♯chash 13435 Vtxcvtx 26344 Walkscwlks 26944 WalksOncwlkson 26945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-ifp 1047 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-er 8026 df-map 8142 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-card 9098 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-n0 11643 df-z 11729 df-uz 11993 df-fz 12644 df-fzo 12785 df-hash 13436 df-word 13600 df-wlks 26947 df-wlkson 26948 |
This theorem is referenced by: iswlkon 27004 wlkonprop 27005 |
Copyright terms: Public domain | W3C validator |