Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wlkson | Structured version Visualization version GIF version |
Description: The set of walks between two vertices. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 30-Dec-2020.) (Revised by AV, 22-Mar-2021.) |
Ref | Expression |
---|---|
wlkson.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
wlkson | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkson.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | 1vgrex 27117 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ V) |
3 | 2 | adantr 484 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐺 ∈ V) |
4 | simpl 486 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
5 | 4, 1 | eleqtrdi 2849 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ (Vtx‘𝐺)) |
6 | simpr 488 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
7 | 6, 1 | eleqtrdi 2849 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ (Vtx‘𝐺)) |
8 | wksv 27731 | . . . 4 ⊢ {〈𝑓, 𝑝〉 ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V | |
9 | 8 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → {〈𝑓, 𝑝〉 ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V) |
10 | simpr 488 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑓(Walks‘𝐺)𝑝) → 𝑓(Walks‘𝐺)𝑝) | |
11 | eqeq2 2750 | . . . 4 ⊢ (𝑎 = 𝐴 → ((𝑝‘0) = 𝑎 ↔ (𝑝‘0) = 𝐴)) | |
12 | eqeq2 2750 | . . . 4 ⊢ (𝑏 = 𝐵 → ((𝑝‘(♯‘𝑓)) = 𝑏 ↔ (𝑝‘(♯‘𝑓)) = 𝐵)) | |
13 | 11, 12 | bi2anan9 639 | . . 3 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ↔ ((𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵))) |
14 | biidd 265 | . . 3 ⊢ (𝑔 = 𝐺 → (((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ↔ ((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏))) | |
15 | df-wlkson 27712 | . . . 4 ⊢ WalksOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏)})) | |
16 | eqid 2738 | . . . . . 6 ⊢ (Vtx‘𝑔) = (Vtx‘𝑔) | |
17 | 3anass 1097 | . . . . . . . 8 ⊢ ((𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ↔ (𝑓(Walks‘𝑔)𝑝 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏))) | |
18 | 17 | biancomi 466 | . . . . . . 7 ⊢ ((𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ↔ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)) |
19 | 18 | opabbii 5134 | . . . . . 6 ⊢ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏)} = {〈𝑓, 𝑝〉 ∣ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)} |
20 | 16, 16, 19 | mpoeq123i 7305 | . . . . 5 ⊢ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏)}) = (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)}) |
21 | 20 | mpteq2i 5161 | . . . 4 ⊢ (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏)})) = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)})) |
22 | 15, 21 | eqtri 2766 | . . 3 ⊢ WalksOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)})) |
23 | 3, 5, 7, 9, 10, 13, 14, 22 | mptmpoopabbrd 7869 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {〈𝑓, 𝑝〉 ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵) ∧ 𝑓(Walks‘𝐺)𝑝)}) |
24 | ancom 464 | . . . 4 ⊢ ((((𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵) ∧ 𝑓(Walks‘𝐺)𝑝) ↔ (𝑓(Walks‘𝐺)𝑝 ∧ ((𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵))) | |
25 | 3anass 1097 | . . . 4 ⊢ ((𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵) ↔ (𝑓(Walks‘𝐺)𝑝 ∧ ((𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵))) | |
26 | 24, 25 | bitr4i 281 | . . 3 ⊢ ((((𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵) ∧ 𝑓(Walks‘𝐺)𝑝) ↔ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵)) |
27 | 26 | opabbii 5134 | . 2 ⊢ {〈𝑓, 𝑝〉 ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵) ∧ 𝑓(Walks‘𝐺)𝑝)} = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵)} |
28 | 23, 27 | eqtrdi 2795 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2111 Vcvv 3420 class class class wbr 5067 {copab 5129 ↦ cmpt 5149 ‘cfv 6397 (class class class)co 7231 ∈ cmpo 7233 0cc0 10753 ♯chash 13920 Vtxcvtx 27111 Walkscwlks 27708 WalksOncwlkson 27709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5193 ax-sep 5206 ax-nul 5213 ax-pow 5272 ax-pr 5336 ax-un 7541 ax-cnex 10809 ax-resscn 10810 ax-1cn 10811 ax-icn 10812 ax-addcl 10813 ax-addrcl 10814 ax-mulcl 10815 ax-mulrcl 10816 ax-mulcom 10817 ax-addass 10818 ax-mulass 10819 ax-distr 10820 ax-i2m1 10821 ax-1ne0 10822 ax-1rid 10823 ax-rnegex 10824 ax-rrecex 10825 ax-cnre 10826 ax-pre-lttri 10827 ax-pre-lttrn 10828 ax-pre-ltadd 10829 ax-pre-mulgt0 10830 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-ifp 1064 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3422 df-sbc 3709 df-csb 3826 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-pss 3899 df-nul 4252 df-if 4454 df-pw 4529 df-sn 4556 df-pr 4558 df-tp 4560 df-op 4562 df-uni 4834 df-int 4874 df-iun 4920 df-br 5068 df-opab 5130 df-mpt 5150 df-tr 5176 df-id 5469 df-eprel 5474 df-po 5482 df-so 5483 df-fr 5523 df-we 5525 df-xp 5571 df-rel 5572 df-cnv 5573 df-co 5574 df-dm 5575 df-rn 5576 df-res 5577 df-ima 5578 df-pred 6175 df-ord 6233 df-on 6234 df-lim 6235 df-suc 6236 df-iota 6355 df-fun 6399 df-fn 6400 df-f 6401 df-f1 6402 df-fo 6403 df-f1o 6404 df-fv 6405 df-riota 7188 df-ov 7234 df-oprab 7235 df-mpo 7236 df-om 7663 df-1st 7779 df-2nd 7780 df-wrecs 8067 df-recs 8128 df-rdg 8166 df-1o 8222 df-er 8411 df-map 8530 df-en 8647 df-dom 8648 df-sdom 8649 df-fin 8650 df-card 9579 df-pnf 10893 df-mnf 10894 df-xr 10895 df-ltxr 10896 df-le 10897 df-sub 11088 df-neg 11089 df-nn 11855 df-n0 12115 df-z 12201 df-uz 12463 df-fz 13120 df-fzo 13263 df-hash 13921 df-word 14094 df-wlks 27711 df-wlkson 27712 |
This theorem is referenced by: iswlkon 27769 wlkonprop 27770 |
Copyright terms: Public domain | W3C validator |