Step | Hyp | Ref
| Expression |
1 | | wlkson.v |
. . . . 5
⊢ 𝑉 = (Vtx‘𝐺) |
2 | 1 | 1vgrex 27372 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ V) |
3 | 2 | adantr 481 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐺 ∈ V) |
4 | | simpl 483 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝑉) |
5 | 4, 1 | eleqtrdi 2849 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ (Vtx‘𝐺)) |
6 | | simpr 485 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) |
7 | 6, 1 | eleqtrdi 2849 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ (Vtx‘𝐺)) |
8 | | eqeq2 2750 |
. . . 4
⊢ (𝑎 = 𝐴 → ((𝑝‘0) = 𝑎 ↔ (𝑝‘0) = 𝐴)) |
9 | | eqeq2 2750 |
. . . 4
⊢ (𝑏 = 𝐵 → ((𝑝‘(♯‘𝑓)) = 𝑏 ↔ (𝑝‘(♯‘𝑓)) = 𝐵)) |
10 | 8, 9 | bi2anan9 636 |
. . 3
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ↔ ((𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵))) |
11 | | biidd 261 |
. . 3
⊢ (𝑔 = 𝐺 → (((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ↔ ((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏))) |
12 | | df-wlkson 27967 |
. . . 4
⊢ WalksOn =
(𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏)})) |
13 | | eqid 2738 |
. . . . . 6
⊢
(Vtx‘𝑔) =
(Vtx‘𝑔) |
14 | | 3anass 1094 |
. . . . . . . 8
⊢ ((𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ↔ (𝑓(Walks‘𝑔)𝑝 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏))) |
15 | 14 | biancomi 463 |
. . . . . . 7
⊢ ((𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ↔ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)) |
16 | 15 | opabbii 5141 |
. . . . . 6
⊢
{〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏)} = {〈𝑓, 𝑝〉 ∣ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)} |
17 | 13, 13, 16 | mpoeq123i 7351 |
. . . . 5
⊢ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏)}) = (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)}) |
18 | 17 | mpteq2i 5179 |
. . . 4
⊢ (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏)})) = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)})) |
19 | 12, 18 | eqtri 2766 |
. . 3
⊢ WalksOn =
(𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)})) |
20 | 3, 5, 7, 10, 11, 19 | mptmpoopabbrd 7921 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {〈𝑓, 𝑝〉 ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵) ∧ 𝑓(Walks‘𝐺)𝑝)}) |
21 | | ancom 461 |
. . . 4
⊢ ((((𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵) ∧ 𝑓(Walks‘𝐺)𝑝) ↔ (𝑓(Walks‘𝐺)𝑝 ∧ ((𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵))) |
22 | | 3anass 1094 |
. . . 4
⊢ ((𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵) ↔ (𝑓(Walks‘𝐺)𝑝 ∧ ((𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵))) |
23 | 21, 22 | bitr4i 277 |
. . 3
⊢ ((((𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵) ∧ 𝑓(Walks‘𝐺)𝑝) ↔ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵)) |
24 | 23 | opabbii 5141 |
. 2
⊢
{〈𝑓, 𝑝〉 ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵) ∧ 𝑓(Walks‘𝐺)𝑝)} = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵)} |
25 | 20, 24 | eqtrdi 2794 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵)}) |