MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkson Structured version   Visualization version   GIF version

Theorem wlkson 29593
Description: The set of walks between two vertices. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 30-Dec-2020.) (Revised by AV, 22-Mar-2021.)
Hypothesis
Ref Expression
wlkson.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wlkson ((𝐴𝑉𝐵𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵)})
Distinct variable groups:   𝐴,𝑓,𝑝   𝐵,𝑓,𝑝   𝑓,𝐺,𝑝   𝑓,𝑉,𝑝

Proof of Theorem wlkson
Dummy variables 𝑎 𝑏 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wlkson.v . . . . 5 𝑉 = (Vtx‘𝐺)
211vgrex 28938 . . . 4 (𝐴𝑉𝐺 ∈ V)
32adantr 479 . . 3 ((𝐴𝑉𝐵𝑉) → 𝐺 ∈ V)
4 simpl 481 . . . 4 ((𝐴𝑉𝐵𝑉) → 𝐴𝑉)
54, 1eleqtrdi 2836 . . 3 ((𝐴𝑉𝐵𝑉) → 𝐴 ∈ (Vtx‘𝐺))
6 simpr 483 . . . 4 ((𝐴𝑉𝐵𝑉) → 𝐵𝑉)
76, 1eleqtrdi 2836 . . 3 ((𝐴𝑉𝐵𝑉) → 𝐵 ∈ (Vtx‘𝐺))
8 eqeq2 2738 . . . 4 (𝑎 = 𝐴 → ((𝑝‘0) = 𝑎 ↔ (𝑝‘0) = 𝐴))
9 eqeq2 2738 . . . 4 (𝑏 = 𝐵 → ((𝑝‘(♯‘𝑓)) = 𝑏 ↔ (𝑝‘(♯‘𝑓)) = 𝐵))
108, 9bi2anan9 636 . . 3 ((𝑎 = 𝐴𝑏 = 𝐵) → (((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ↔ ((𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵)))
11 biidd 261 . . 3 (𝑔 = 𝐺 → (((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ↔ ((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏)))
12 df-wlkson 29537 . . . 4 WalksOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏)}))
13 eqid 2726 . . . . . 6 (Vtx‘𝑔) = (Vtx‘𝑔)
14 3anass 1092 . . . . . . . 8 ((𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ↔ (𝑓(Walks‘𝑔)𝑝 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏)))
1514biancomi 461 . . . . . . 7 ((𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ↔ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝))
1615opabbii 5220 . . . . . 6 {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏)} = {⟨𝑓, 𝑝⟩ ∣ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)}
1713, 13, 16mpoeq123i 7501 . . . . 5 (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏)}) = (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)})
1817mpteq2i 5258 . . . 4 (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏)})) = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)}))
1912, 18eqtri 2754 . . 3 WalksOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)}))
203, 5, 7, 10, 11, 19mptmpoopabbrd 8094 . 2 ((𝐴𝑉𝐵𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵) ∧ 𝑓(Walks‘𝐺)𝑝)})
21 ancom 459 . . . 4 ((((𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵) ∧ 𝑓(Walks‘𝐺)𝑝) ↔ (𝑓(Walks‘𝐺)𝑝 ∧ ((𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵)))
22 3anass 1092 . . . 4 ((𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵) ↔ (𝑓(Walks‘𝐺)𝑝 ∧ ((𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵)))
2321, 22bitr4i 277 . . 3 ((((𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵) ∧ 𝑓(Walks‘𝐺)𝑝) ↔ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵))
2423opabbii 5220 . 2 {⟨𝑓, 𝑝⟩ ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵) ∧ 𝑓(Walks‘𝐺)𝑝)} = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵)}
2520, 24eqtrdi 2782 1 ((𝐴𝑉𝐵𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  Vcvv 3462   class class class wbr 5153  {copab 5215  cmpt 5236  cfv 6554  (class class class)co 7424  cmpo 7426  0cc0 11158  chash 14347  Vtxcvtx 28932  Walkscwlks 29533  WalksOncwlkson 29534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-1st 8003  df-2nd 8004  df-wlkson 29537
This theorem is referenced by:  iswlkon  29594  wlkonprop  29595
  Copyright terms: Public domain W3C validator