MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkson Structured version   Visualization version   GIF version

Theorem wlkson 28902
Description: The set of walks between two vertices. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 30-Dec-2020.) (Revised by AV, 22-Mar-2021.)
Hypothesis
Ref Expression
wlkson.v 𝑉 = (Vtxβ€˜πΊ)
Assertion
Ref Expression
wlkson ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ (𝐴(WalksOnβ€˜πΊ)𝐡) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = 𝐴 ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝐡)})
Distinct variable groups:   𝐴,𝑓,𝑝   𝐡,𝑓,𝑝   𝑓,𝐺,𝑝   𝑓,𝑉,𝑝

Proof of Theorem wlkson
Dummy variables π‘Ž 𝑏 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wlkson.v . . . . 5 𝑉 = (Vtxβ€˜πΊ)
211vgrex 28251 . . . 4 (𝐴 ∈ 𝑉 β†’ 𝐺 ∈ V)
32adantr 481 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ 𝐺 ∈ V)
4 simpl 483 . . . 4 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ 𝐴 ∈ 𝑉)
54, 1eleqtrdi 2843 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ 𝐴 ∈ (Vtxβ€˜πΊ))
6 simpr 485 . . . 4 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ 𝐡 ∈ 𝑉)
76, 1eleqtrdi 2843 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ 𝐡 ∈ (Vtxβ€˜πΊ))
8 eqeq2 2744 . . . 4 (π‘Ž = 𝐴 β†’ ((π‘β€˜0) = π‘Ž ↔ (π‘β€˜0) = 𝐴))
9 eqeq2 2744 . . . 4 (𝑏 = 𝐡 β†’ ((π‘β€˜(β™―β€˜π‘“)) = 𝑏 ↔ (π‘β€˜(β™―β€˜π‘“)) = 𝐡))
108, 9bi2anan9 637 . . 3 ((π‘Ž = 𝐴 ∧ 𝑏 = 𝐡) β†’ (((π‘β€˜0) = π‘Ž ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝑏) ↔ ((π‘β€˜0) = 𝐴 ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝐡)))
11 biidd 261 . . 3 (𝑔 = 𝐺 β†’ (((π‘β€˜0) = π‘Ž ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝑏) ↔ ((π‘β€˜0) = π‘Ž ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝑏)))
12 df-wlkson 28846 . . . 4 WalksOn = (𝑔 ∈ V ↦ (π‘Ž ∈ (Vtxβ€˜π‘”), 𝑏 ∈ (Vtxβ€˜π‘”) ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜π‘”)𝑝 ∧ (π‘β€˜0) = π‘Ž ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝑏)}))
13 eqid 2732 . . . . . 6 (Vtxβ€˜π‘”) = (Vtxβ€˜π‘”)
14 3anass 1095 . . . . . . . 8 ((𝑓(Walksβ€˜π‘”)𝑝 ∧ (π‘β€˜0) = π‘Ž ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝑏) ↔ (𝑓(Walksβ€˜π‘”)𝑝 ∧ ((π‘β€˜0) = π‘Ž ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝑏)))
1514biancomi 463 . . . . . . 7 ((𝑓(Walksβ€˜π‘”)𝑝 ∧ (π‘β€˜0) = π‘Ž ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝑏) ↔ (((π‘β€˜0) = π‘Ž ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝑏) ∧ 𝑓(Walksβ€˜π‘”)𝑝))
1615opabbii 5214 . . . . . 6 {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜π‘”)𝑝 ∧ (π‘β€˜0) = π‘Ž ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝑏)} = {βŸ¨π‘“, π‘βŸ© ∣ (((π‘β€˜0) = π‘Ž ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝑏) ∧ 𝑓(Walksβ€˜π‘”)𝑝)}
1713, 13, 16mpoeq123i 7481 . . . . 5 (π‘Ž ∈ (Vtxβ€˜π‘”), 𝑏 ∈ (Vtxβ€˜π‘”) ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜π‘”)𝑝 ∧ (π‘β€˜0) = π‘Ž ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝑏)}) = (π‘Ž ∈ (Vtxβ€˜π‘”), 𝑏 ∈ (Vtxβ€˜π‘”) ↦ {βŸ¨π‘“, π‘βŸ© ∣ (((π‘β€˜0) = π‘Ž ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝑏) ∧ 𝑓(Walksβ€˜π‘”)𝑝)})
1817mpteq2i 5252 . . . 4 (𝑔 ∈ V ↦ (π‘Ž ∈ (Vtxβ€˜π‘”), 𝑏 ∈ (Vtxβ€˜π‘”) ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜π‘”)𝑝 ∧ (π‘β€˜0) = π‘Ž ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝑏)})) = (𝑔 ∈ V ↦ (π‘Ž ∈ (Vtxβ€˜π‘”), 𝑏 ∈ (Vtxβ€˜π‘”) ↦ {βŸ¨π‘“, π‘βŸ© ∣ (((π‘β€˜0) = π‘Ž ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝑏) ∧ 𝑓(Walksβ€˜π‘”)𝑝)}))
1912, 18eqtri 2760 . . 3 WalksOn = (𝑔 ∈ V ↦ (π‘Ž ∈ (Vtxβ€˜π‘”), 𝑏 ∈ (Vtxβ€˜π‘”) ↦ {βŸ¨π‘“, π‘βŸ© ∣ (((π‘β€˜0) = π‘Ž ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝑏) ∧ 𝑓(Walksβ€˜π‘”)𝑝)}))
203, 5, 7, 10, 11, 19mptmpoopabbrd 8063 . 2 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ (𝐴(WalksOnβ€˜πΊ)𝐡) = {βŸ¨π‘“, π‘βŸ© ∣ (((π‘β€˜0) = 𝐴 ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝐡) ∧ 𝑓(Walksβ€˜πΊ)𝑝)})
21 ancom 461 . . . 4 ((((π‘β€˜0) = 𝐴 ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝐡) ∧ 𝑓(Walksβ€˜πΊ)𝑝) ↔ (𝑓(Walksβ€˜πΊ)𝑝 ∧ ((π‘β€˜0) = 𝐴 ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝐡)))
22 3anass 1095 . . . 4 ((𝑓(Walksβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = 𝐴 ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝐡) ↔ (𝑓(Walksβ€˜πΊ)𝑝 ∧ ((π‘β€˜0) = 𝐴 ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝐡)))
2321, 22bitr4i 277 . . 3 ((((π‘β€˜0) = 𝐴 ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝐡) ∧ 𝑓(Walksβ€˜πΊ)𝑝) ↔ (𝑓(Walksβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = 𝐴 ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝐡))
2423opabbii 5214 . 2 {βŸ¨π‘“, π‘βŸ© ∣ (((π‘β€˜0) = 𝐴 ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝐡) ∧ 𝑓(Walksβ€˜πΊ)𝑝)} = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = 𝐴 ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝐡)}
2520, 24eqtrdi 2788 1 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ (𝐴(WalksOnβ€˜πΊ)𝐡) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = 𝐴 ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝐡)})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  Vcvv 3474   class class class wbr 5147  {copab 5209   ↦ cmpt 5230  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  0cc0 11106  β™―chash 14286  Vtxcvtx 28245  Walkscwlks 28842  WalksOncwlkson 28843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-wlkson 28846
This theorem is referenced by:  iswlkon  28903  wlkonprop  28904
  Copyright terms: Public domain W3C validator