MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-xnn0 Structured version   Visualization version   GIF version

Definition df-xnn0 12626
Description: Define the set of extended nonnegative integers that includes positive infinity. Analogue of the extension of the real numbers *, see df-xr 11328. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
df-xnn0 0* = (ℕ0 ∪ {+∞})

Detailed syntax breakdown of Definition df-xnn0
StepHypRef Expression
1 cxnn0 12625 . 2 class 0*
2 cn0 12553 . . 3 class 0
3 cpnf 11321 . . . 4 class +∞
43csn 4648 . . 3 class {+∞}
52, 4cun 3974 . 2 class (ℕ0 ∪ {+∞})
61, 5wceq 1537 1 wff 0* = (ℕ0 ∪ {+∞})
Colors of variables: wff setvar class
This definition is referenced by:  elxnn0  12627  nn0ssxnn0  12628  hashfxnn0  14386  hashf  14387
  Copyright terms: Public domain W3C validator