MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxnn0 Structured version   Visualization version   GIF version

Theorem elxnn0 12237
Description: An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
elxnn0 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))

Proof of Theorem elxnn0
StepHypRef Expression
1 df-xnn0 12236 . . 3 0* = (ℕ0 ∪ {+∞})
21eleq2i 2830 . 2 (𝐴 ∈ ℕ0*𝐴 ∈ (ℕ0 ∪ {+∞}))
3 elun 4079 . 2 (𝐴 ∈ (ℕ0 ∪ {+∞}) ↔ (𝐴 ∈ ℕ0𝐴 ∈ {+∞}))
4 pnfex 10959 . . . 4 +∞ ∈ V
54elsn2 4597 . . 3 (𝐴 ∈ {+∞} ↔ 𝐴 = +∞)
65orbi2i 909 . 2 ((𝐴 ∈ ℕ0𝐴 ∈ {+∞}) ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
72, 3, 63bitri 296 1 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 843   = wceq 1539  wcel 2108  cun 3881  {csn 4558  +∞cpnf 10937  0cn0 12163  0*cxnn0 12235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-pow 5283  ax-un 7566  ax-cnex 10858
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-un 3888  df-in 3890  df-ss 3900  df-pw 4532  df-sn 4559  df-uni 4837  df-pnf 10942  df-xnn0 12236
This theorem is referenced by:  xnn0xr  12240  pnf0xnn0  12242  xnn0nemnf  12246  xnn0nnn0pnf  12248  xnn0n0n1ge2b  12796  xnn0ge0  12798  xnn0lenn0nn0  12908  xnn0xadd0  12910  xnn0xrge0  13167  tayl0  25426  xnn0gt0  30994
  Copyright terms: Public domain W3C validator