MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxnn0 Structured version   Visualization version   GIF version

Theorem elxnn0 12592
Description: An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
elxnn0 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))

Proof of Theorem elxnn0
StepHypRef Expression
1 df-xnn0 12591 . . 3 0* = (ℕ0 ∪ {+∞})
21eleq2i 2818 . 2 (𝐴 ∈ ℕ0*𝐴 ∈ (ℕ0 ∪ {+∞}))
3 elun 4145 . 2 (𝐴 ∈ (ℕ0 ∪ {+∞}) ↔ (𝐴 ∈ ℕ0𝐴 ∈ {+∞}))
4 pnfex 11308 . . . 4 +∞ ∈ V
54elsn2 4662 . . 3 (𝐴 ∈ {+∞} ↔ 𝐴 = +∞)
65orbi2i 910 . 2 ((𝐴 ∈ ℕ0𝐴 ∈ {+∞}) ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
72, 3, 63bitri 296 1 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 845   = wceq 1534  wcel 2099  cun 3944  {csn 4623  +∞cpnf 11286  0cn0 12518  0*cxnn0 12590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-sep 5296  ax-pow 5361  ax-un 7738  ax-cnex 11205
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-v 3464  df-un 3951  df-ss 3963  df-pw 4599  df-sn 4624  df-uni 4906  df-pnf 11291  df-xnn0 12591
This theorem is referenced by:  xnn0xr  12595  pnf0xnn0  12597  xnn0nemnf  12601  xnn0nnn0pnf  12603  xnn0n0n1ge2b  13159  xnn0ge0  13161  xnn0lenn0nn0  13272  xnn0xadd0  13274  xnn0xrge0  13531  tayl0  26386  xnn0gt0  32676
  Copyright terms: Public domain W3C validator