MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxnn0 Structured version   Visualization version   GIF version

Theorem elxnn0 12459
Description: An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
elxnn0 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))

Proof of Theorem elxnn0
StepHypRef Expression
1 df-xnn0 12458 . . 3 0* = (ℕ0 ∪ {+∞})
21eleq2i 2820 . 2 (𝐴 ∈ ℕ0*𝐴 ∈ (ℕ0 ∪ {+∞}))
3 elun 4104 . 2 (𝐴 ∈ (ℕ0 ∪ {+∞}) ↔ (𝐴 ∈ ℕ0𝐴 ∈ {+∞}))
4 pnfex 11168 . . . 4 +∞ ∈ V
54elsn2 4617 . . 3 (𝐴 ∈ {+∞} ↔ 𝐴 = +∞)
65orbi2i 912 . 2 ((𝐴 ∈ ℕ0𝐴 ∈ {+∞}) ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
72, 3, 63bitri 297 1 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1540  wcel 2109  cun 3901  {csn 4577  +∞cpnf 11146  0cn0 12384  0*cxnn0 12457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-pow 5304  ax-un 7671  ax-cnex 11065
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3438  df-un 3908  df-ss 3920  df-pw 4553  df-sn 4578  df-uni 4859  df-pnf 11151  df-xnn0 12458
This theorem is referenced by:  xnn0xr  12462  pnf0xnn0  12464  xnn0nemnf  12468  xnn0nnn0pnf  12470  xnn0n0n1ge2b  13034  xnn0ge0  13036  xnn0lenn0nn0  13147  xnn0xadd0  13149  xnn0xrge0  13409  tayl0  26267  xnn0gt0  32712  xnn0nn0d  32715  fldextrspundgdvdslem  33647
  Copyright terms: Public domain W3C validator