| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elxnn0 | Structured version Visualization version GIF version | ||
| Description: An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.) |
| Ref | Expression |
|---|---|
| elxnn0 | ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xnn0 12575 | . . 3 ⊢ ℕ0* = (ℕ0 ∪ {+∞}) | |
| 2 | 1 | eleq2i 2826 | . 2 ⊢ (𝐴 ∈ ℕ0* ↔ 𝐴 ∈ (ℕ0 ∪ {+∞})) |
| 3 | elun 4128 | . 2 ⊢ (𝐴 ∈ (ℕ0 ∪ {+∞}) ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 ∈ {+∞})) | |
| 4 | pnfex 11288 | . . . 4 ⊢ +∞ ∈ V | |
| 5 | 4 | elsn2 4641 | . . 3 ⊢ (𝐴 ∈ {+∞} ↔ 𝐴 = +∞) |
| 6 | 5 | orbi2i 912 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∨ 𝐴 ∈ {+∞}) ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
| 7 | 2, 3, 6 | 3bitri 297 | 1 ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ∪ cun 3924 {csn 4601 +∞cpnf 11266 ℕ0cn0 12501 ℕ0*cxnn0 12574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-pow 5335 ax-un 7729 ax-cnex 11185 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-ss 3943 df-pw 4577 df-sn 4602 df-uni 4884 df-pnf 11271 df-xnn0 12575 |
| This theorem is referenced by: xnn0xr 12579 pnf0xnn0 12581 xnn0nemnf 12585 xnn0nnn0pnf 12587 xnn0n0n1ge2b 13148 xnn0ge0 13150 xnn0lenn0nn0 13261 xnn0xadd0 13263 xnn0xrge0 13523 tayl0 26321 xnn0gt0 32746 xnn0nn0d 32749 fldextrspundgdvdslem 33721 |
| Copyright terms: Public domain | W3C validator |