MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxnn0 Structured version   Visualization version   GIF version

Theorem elxnn0 12627
Description: An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
elxnn0 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))

Proof of Theorem elxnn0
StepHypRef Expression
1 df-xnn0 12626 . . 3 0* = (ℕ0 ∪ {+∞})
21eleq2i 2836 . 2 (𝐴 ∈ ℕ0*𝐴 ∈ (ℕ0 ∪ {+∞}))
3 elun 4176 . 2 (𝐴 ∈ (ℕ0 ∪ {+∞}) ↔ (𝐴 ∈ ℕ0𝐴 ∈ {+∞}))
4 pnfex 11343 . . . 4 +∞ ∈ V
54elsn2 4687 . . 3 (𝐴 ∈ {+∞} ↔ 𝐴 = +∞)
65orbi2i 911 . 2 ((𝐴 ∈ ℕ0𝐴 ∈ {+∞}) ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
72, 3, 63bitri 297 1 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 846   = wceq 1537  wcel 2108  cun 3974  {csn 4648  +∞cpnf 11321  0cn0 12553  0*cxnn0 12625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-pow 5383  ax-un 7770  ax-cnex 11240
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-un 3981  df-ss 3993  df-pw 4624  df-sn 4649  df-uni 4932  df-pnf 11326  df-xnn0 12626
This theorem is referenced by:  xnn0xr  12630  pnf0xnn0  12632  xnn0nemnf  12636  xnn0nnn0pnf  12638  xnn0n0n1ge2b  13194  xnn0ge0  13196  xnn0lenn0nn0  13307  xnn0xadd0  13309  xnn0xrge0  13566  tayl0  26421  xnn0gt0  32776
  Copyright terms: Public domain W3C validator