![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elxnn0 | Structured version Visualization version GIF version |
Description: An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
elxnn0 | ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xnn0 12598 | . . 3 ⊢ ℕ0* = (ℕ0 ∪ {+∞}) | |
2 | 1 | eleq2i 2831 | . 2 ⊢ (𝐴 ∈ ℕ0* ↔ 𝐴 ∈ (ℕ0 ∪ {+∞})) |
3 | elun 4163 | . 2 ⊢ (𝐴 ∈ (ℕ0 ∪ {+∞}) ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 ∈ {+∞})) | |
4 | pnfex 11312 | . . . 4 ⊢ +∞ ∈ V | |
5 | 4 | elsn2 4670 | . . 3 ⊢ (𝐴 ∈ {+∞} ↔ 𝐴 = +∞) |
6 | 5 | orbi2i 912 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∨ 𝐴 ∈ {+∞}) ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
7 | 2, 3, 6 | 3bitri 297 | 1 ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ∪ cun 3961 {csn 4631 +∞cpnf 11290 ℕ0cn0 12524 ℕ0*cxnn0 12597 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-pow 5371 ax-un 7754 ax-cnex 11209 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-ss 3980 df-pw 4607 df-sn 4632 df-uni 4913 df-pnf 11295 df-xnn0 12598 |
This theorem is referenced by: xnn0xr 12602 pnf0xnn0 12604 xnn0nemnf 12608 xnn0nnn0pnf 12610 xnn0n0n1ge2b 13171 xnn0ge0 13173 xnn0lenn0nn0 13284 xnn0xadd0 13286 xnn0xrge0 13543 tayl0 26418 xnn0gt0 32780 |
Copyright terms: Public domain | W3C validator |