MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxnn0 Structured version   Visualization version   GIF version

Theorem elxnn0 12307
Description: An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
elxnn0 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))

Proof of Theorem elxnn0
StepHypRef Expression
1 df-xnn0 12306 . . 3 0* = (ℕ0 ∪ {+∞})
21eleq2i 2830 . 2 (𝐴 ∈ ℕ0*𝐴 ∈ (ℕ0 ∪ {+∞}))
3 elun 4083 . 2 (𝐴 ∈ (ℕ0 ∪ {+∞}) ↔ (𝐴 ∈ ℕ0𝐴 ∈ {+∞}))
4 pnfex 11028 . . . 4 +∞ ∈ V
54elsn2 4600 . . 3 (𝐴 ∈ {+∞} ↔ 𝐴 = +∞)
65orbi2i 910 . 2 ((𝐴 ∈ ℕ0𝐴 ∈ {+∞}) ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
72, 3, 63bitri 297 1 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 844   = wceq 1539  wcel 2106  cun 3885  {csn 4561  +∞cpnf 11006  0cn0 12233  0*cxnn0 12305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-pow 5288  ax-un 7588  ax-cnex 10927
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-un 3892  df-in 3894  df-ss 3904  df-pw 4535  df-sn 4562  df-uni 4840  df-pnf 11011  df-xnn0 12306
This theorem is referenced by:  xnn0xr  12310  pnf0xnn0  12312  xnn0nemnf  12316  xnn0nnn0pnf  12318  xnn0n0n1ge2b  12867  xnn0ge0  12869  xnn0lenn0nn0  12979  xnn0xadd0  12981  xnn0xrge0  13238  tayl0  25521  xnn0gt0  31092
  Copyright terms: Public domain W3C validator