MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxnn0 Structured version   Visualization version   GIF version

Theorem elxnn0 12043
Description: An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
elxnn0 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))

Proof of Theorem elxnn0
StepHypRef Expression
1 df-xnn0 12042 . . 3 0* = (ℕ0 ∪ {+∞})
21eleq2i 2824 . 2 (𝐴 ∈ ℕ0*𝐴 ∈ (ℕ0 ∪ {+∞}))
3 elun 4037 . 2 (𝐴 ∈ (ℕ0 ∪ {+∞}) ↔ (𝐴 ∈ ℕ0𝐴 ∈ {+∞}))
4 pnfex 10765 . . . 4 +∞ ∈ V
54elsn2 4552 . . 3 (𝐴 ∈ {+∞} ↔ 𝐴 = +∞)
65orbi2i 912 . 2 ((𝐴 ∈ ℕ0𝐴 ∈ {+∞}) ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
72, 3, 63bitri 300 1 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wo 846   = wceq 1542  wcel 2113  cun 3839  {csn 4513  +∞cpnf 10743  0cn0 11969  0*cxnn0 12041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-ext 2710  ax-sep 5164  ax-pow 5229  ax-un 7473  ax-cnex 10664
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-tru 1545  df-ex 1787  df-sb 2074  df-clab 2717  df-cleq 2730  df-clel 2811  df-v 3399  df-un 3846  df-in 3848  df-ss 3858  df-pw 4487  df-sn 4514  df-uni 4794  df-pnf 10748  df-xnn0 12042
This theorem is referenced by:  xnn0xr  12046  pnf0xnn0  12048  xnn0nemnf  12052  xnn0nnn0pnf  12054  xnn0n0n1ge2b  12602  xnn0ge0  12604  xnn0lenn0nn0  12714  xnn0xadd0  12716  xnn0xrge0  12973  tayl0  25101  xnn0gt0  30659
  Copyright terms: Public domain W3C validator