Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elxnn0 | Structured version Visualization version GIF version |
Description: An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
elxnn0 | ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xnn0 12236 | . . 3 ⊢ ℕ0* = (ℕ0 ∪ {+∞}) | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (𝐴 ∈ ℕ0* ↔ 𝐴 ∈ (ℕ0 ∪ {+∞})) |
3 | elun 4079 | . 2 ⊢ (𝐴 ∈ (ℕ0 ∪ {+∞}) ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 ∈ {+∞})) | |
4 | pnfex 10959 | . . . 4 ⊢ +∞ ∈ V | |
5 | 4 | elsn2 4597 | . . 3 ⊢ (𝐴 ∈ {+∞} ↔ 𝐴 = +∞) |
6 | 5 | orbi2i 909 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∨ 𝐴 ∈ {+∞}) ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
7 | 2, 3, 6 | 3bitri 296 | 1 ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∪ cun 3881 {csn 4558 +∞cpnf 10937 ℕ0cn0 12163 ℕ0*cxnn0 12235 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-pow 5283 ax-un 7566 ax-cnex 10858 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 df-pw 4532 df-sn 4559 df-uni 4837 df-pnf 10942 df-xnn0 12236 |
This theorem is referenced by: xnn0xr 12240 pnf0xnn0 12242 xnn0nemnf 12246 xnn0nnn0pnf 12248 xnn0n0n1ge2b 12796 xnn0ge0 12798 xnn0lenn0nn0 12908 xnn0xadd0 12910 xnn0xrge0 13167 tayl0 25426 xnn0gt0 30994 |
Copyright terms: Public domain | W3C validator |