MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxnn0 Structured version   Visualization version   GIF version

Theorem elxnn0 12493
Description: An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
elxnn0 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))

Proof of Theorem elxnn0
StepHypRef Expression
1 df-xnn0 12492 . . 3 0* = (ℕ0 ∪ {+∞})
21eleq2i 2820 . 2 (𝐴 ∈ ℕ0*𝐴 ∈ (ℕ0 ∪ {+∞}))
3 elun 4112 . 2 (𝐴 ∈ (ℕ0 ∪ {+∞}) ↔ (𝐴 ∈ ℕ0𝐴 ∈ {+∞}))
4 pnfex 11203 . . . 4 +∞ ∈ V
54elsn2 4625 . . 3 (𝐴 ∈ {+∞} ↔ 𝐴 = +∞)
65orbi2i 912 . 2 ((𝐴 ∈ ℕ0𝐴 ∈ {+∞}) ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
72, 3, 63bitri 297 1 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1540  wcel 2109  cun 3909  {csn 4585  +∞cpnf 11181  0cn0 12418  0*cxnn0 12491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-pow 5315  ax-un 7691  ax-cnex 11100
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3446  df-un 3916  df-ss 3928  df-pw 4561  df-sn 4586  df-uni 4868  df-pnf 11186  df-xnn0 12492
This theorem is referenced by:  xnn0xr  12496  pnf0xnn0  12498  xnn0nemnf  12502  xnn0nnn0pnf  12504  xnn0n0n1ge2b  13068  xnn0ge0  13070  xnn0lenn0nn0  13181  xnn0xadd0  13183  xnn0xrge0  13443  tayl0  26245  xnn0gt0  32665  xnn0nn0d  32668  fldextrspundgdvdslem  33648
  Copyright terms: Public domain W3C validator