MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxnn0 Structured version   Visualization version   GIF version

Theorem elxnn0 12546
Description: An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
elxnn0 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))

Proof of Theorem elxnn0
StepHypRef Expression
1 df-xnn0 12545 . . 3 0* = (ℕ0 ∪ {+∞})
21eleq2i 2826 . 2 (𝐴 ∈ ℕ0*𝐴 ∈ (ℕ0 ∪ {+∞}))
3 elun 4149 . 2 (𝐴 ∈ (ℕ0 ∪ {+∞}) ↔ (𝐴 ∈ ℕ0𝐴 ∈ {+∞}))
4 pnfex 11267 . . . 4 +∞ ∈ V
54elsn2 4668 . . 3 (𝐴 ∈ {+∞} ↔ 𝐴 = +∞)
65orbi2i 912 . 2 ((𝐴 ∈ ℕ0𝐴 ∈ {+∞}) ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
72, 3, 63bitri 297 1 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 846   = wceq 1542  wcel 2107  cun 3947  {csn 4629  +∞cpnf 11245  0cn0 12472  0*cxnn0 12544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-pow 5364  ax-un 7725  ax-cnex 11166
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-un 3954  df-in 3956  df-ss 3966  df-pw 4605  df-sn 4630  df-uni 4910  df-pnf 11250  df-xnn0 12545
This theorem is referenced by:  xnn0xr  12549  pnf0xnn0  12551  xnn0nemnf  12555  xnn0nnn0pnf  12557  xnn0n0n1ge2b  13111  xnn0ge0  13113  xnn0lenn0nn0  13224  xnn0xadd0  13226  xnn0xrge0  13483  tayl0  25874  xnn0gt0  32013
  Copyright terms: Public domain W3C validator