Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elxnn0 | Structured version Visualization version GIF version |
Description: An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
elxnn0 | ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xnn0 12306 | . . 3 ⊢ ℕ0* = (ℕ0 ∪ {+∞}) | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (𝐴 ∈ ℕ0* ↔ 𝐴 ∈ (ℕ0 ∪ {+∞})) |
3 | elun 4083 | . 2 ⊢ (𝐴 ∈ (ℕ0 ∪ {+∞}) ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 ∈ {+∞})) | |
4 | pnfex 11028 | . . . 4 ⊢ +∞ ∈ V | |
5 | 4 | elsn2 4600 | . . 3 ⊢ (𝐴 ∈ {+∞} ↔ 𝐴 = +∞) |
6 | 5 | orbi2i 910 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∨ 𝐴 ∈ {+∞}) ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
7 | 2, 3, 6 | 3bitri 297 | 1 ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ∪ cun 3885 {csn 4561 +∞cpnf 11006 ℕ0cn0 12233 ℕ0*cxnn0 12305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-pow 5288 ax-un 7588 ax-cnex 10927 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 df-pw 4535 df-sn 4562 df-uni 4840 df-pnf 11011 df-xnn0 12306 |
This theorem is referenced by: xnn0xr 12310 pnf0xnn0 12312 xnn0nemnf 12316 xnn0nnn0pnf 12318 xnn0n0n1ge2b 12867 xnn0ge0 12869 xnn0lenn0nn0 12979 xnn0xadd0 12981 xnn0xrge0 13238 tayl0 25521 xnn0gt0 31092 |
Copyright terms: Public domain | W3C validator |