| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elxnn0 | Structured version Visualization version GIF version | ||
| Description: An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.) |
| Ref | Expression |
|---|---|
| elxnn0 | ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xnn0 12455 | . . 3 ⊢ ℕ0* = (ℕ0 ∪ {+∞}) | |
| 2 | 1 | eleq2i 2823 | . 2 ⊢ (𝐴 ∈ ℕ0* ↔ 𝐴 ∈ (ℕ0 ∪ {+∞})) |
| 3 | elun 4100 | . 2 ⊢ (𝐴 ∈ (ℕ0 ∪ {+∞}) ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 ∈ {+∞})) | |
| 4 | pnfex 11165 | . . . 4 ⊢ +∞ ∈ V | |
| 5 | 4 | elsn2 4615 | . . 3 ⊢ (𝐴 ∈ {+∞} ↔ 𝐴 = +∞) |
| 6 | 5 | orbi2i 912 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∨ 𝐴 ∈ {+∞}) ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
| 7 | 2, 3, 6 | 3bitri 297 | 1 ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∪ cun 3895 {csn 4573 +∞cpnf 11143 ℕ0cn0 12381 ℕ0*cxnn0 12454 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-pow 5301 ax-un 7668 ax-cnex 11062 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-ss 3914 df-pw 4549 df-sn 4574 df-uni 4857 df-pnf 11148 df-xnn0 12455 |
| This theorem is referenced by: xnn0xr 12459 pnf0xnn0 12461 xnn0nemnf 12465 xnn0nnn0pnf 12467 xnn0n0n1ge2b 13031 xnn0ge0 13033 xnn0lenn0nn0 13144 xnn0xadd0 13146 xnn0xrge0 13406 tayl0 26296 xnn0gt0 32752 xnn0nn0d 32755 fldextrspundgdvdslem 33693 |
| Copyright terms: Public domain | W3C validator |