MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashf Structured version   Visualization version   GIF version

Theorem hashf 14310
Description: The size function maps all finite sets to their cardinality, as members of 0, and infinite sets to +∞. TODO-AV: mark as OBSOLETE and replace it by hashfxnn0 14309? (Contributed by Mario Carneiro, 13-Sep-2013.) (Revised by Mario Carneiro, 13-Jul-2014.) (Proof shortened by AV, 24-Oct-2021.)
Assertion
Ref Expression
hashf ♯:V⟶(ℕ0 ∪ {+∞})

Proof of Theorem hashf
StepHypRef Expression
1 hashfxnn0 14309 . 2 ♯:V⟶ℕ0*
2 eqid 2730 . . 3 V = V
3 df-xnn0 12523 . . . 4 0* = (ℕ0 ∪ {+∞})
43eqcomi 2739 . . 3 (ℕ0 ∪ {+∞}) = ℕ0*
52, 4feq23i 6685 . 2 (♯:V⟶(ℕ0 ∪ {+∞}) ↔ ♯:V⟶ℕ0*)
61, 5mpbir 231 1 ♯:V⟶(ℕ0 ∪ {+∞})
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3450  cun 3915  {csn 4592  wf 6510  +∞cpnf 11212  0cn0 12449  0*cxnn0 12522  chash 14302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-hash 14303
This theorem is referenced by:  hashresfn  14312  dmhashres  14313  hashnn0pnf  14314  hashxrcl  14329  hashgt1  32740  s3clhash  32876  tocyc01  33082  cyc3evpm  33114  cycpmconjslem2  33119  cyc3conja  33121  exsslsb  33599  dimval  33603  dimvalfi  33604  esumcst  34060  hashf2  34081  sseqmw  34389  sseqf  34390  sseqp1  34393  fiblem  34396  fibp1  34399  coinflippv  34482  erdszelem2  35186  erdszelem5  35189  erdszelem7  35191  erdszelem8  35192
  Copyright terms: Public domain W3C validator