MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashf Structured version   Visualization version   GIF version

Theorem hashf 14245
Description: The size function maps all finite sets to their cardinality, as members of 0, and infinite sets to +∞. TODO-AV: mark as OBSOLETE and replace it by hashfxnn0 14244? (Contributed by Mario Carneiro, 13-Sep-2013.) (Revised by Mario Carneiro, 13-Jul-2014.) (Proof shortened by AV, 24-Oct-2021.)
Assertion
Ref Expression
hashf ♯:V⟶(ℕ0 ∪ {+∞})

Proof of Theorem hashf
StepHypRef Expression
1 hashfxnn0 14244 . 2 ♯:V⟶ℕ0*
2 eqid 2731 . . 3 V = V
3 df-xnn0 12455 . . . 4 0* = (ℕ0 ∪ {+∞})
43eqcomi 2740 . . 3 (ℕ0 ∪ {+∞}) = ℕ0*
52, 4feq23i 6645 . 2 (♯:V⟶(ℕ0 ∪ {+∞}) ↔ ♯:V⟶ℕ0*)
61, 5mpbir 231 1 ♯:V⟶(ℕ0 ∪ {+∞})
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3436  cun 3900  {csn 4576  wf 6477  +∞cpnf 11143  0cn0 12381  0*cxnn0 12454  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-hash 14238
This theorem is referenced by:  hashresfn  14247  dmhashres  14248  hashnn0pnf  14249  hashxrcl  14264  hashgt1  32788  s3clhash  32927  tocyc01  33085  cyc3evpm  33117  cycpmconjslem2  33122  cyc3conja  33124  exsslsb  33607  dimval  33611  dimvalfi  33612  esumcst  34074  hashf2  34095  sseqmw  34402  sseqf  34403  sseqp1  34406  fiblem  34409  fibp1  34412  coinflippv  34495  erdszelem2  35234  erdszelem5  35237  erdszelem7  35239  erdszelem8  35240
  Copyright terms: Public domain W3C validator