MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashf Structured version   Visualization version   GIF version

Theorem hashf 14061
Description: The size function maps all finite sets to their cardinality, as members of 0, and infinite sets to +∞. TODO-AV: mark as OBSOLETE and replace it by hashfxnn0 14060? (Contributed by Mario Carneiro, 13-Sep-2013.) (Revised by Mario Carneiro, 13-Jul-2014.) (Proof shortened by AV, 24-Oct-2021.)
Assertion
Ref Expression
hashf ♯:V⟶(ℕ0 ∪ {+∞})

Proof of Theorem hashf
StepHypRef Expression
1 hashfxnn0 14060 . 2 ♯:V⟶ℕ0*
2 eqid 2739 . . 3 V = V
3 df-xnn0 12315 . . . 4 0* = (ℕ0 ∪ {+∞})
43eqcomi 2748 . . 3 (ℕ0 ∪ {+∞}) = ℕ0*
52, 4feq23i 6603 . 2 (♯:V⟶(ℕ0 ∪ {+∞}) ↔ ♯:V⟶ℕ0*)
61, 5mpbir 230 1 ♯:V⟶(ℕ0 ∪ {+∞})
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3433  cun 3886  {csn 4562  wf 6433  +∞cpnf 11015  0cn0 12242  0*cxnn0 12314  chash 14053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-nn 11983  df-n0 12243  df-xnn0 12315  df-z 12329  df-uz 12592  df-hash 14054
This theorem is referenced by:  hashresfn  14063  dmhashres  14064  hashnn0pnf  14065  hashxrcl  14081  hashgt1  31137  s3clhash  31231  tocyc01  31394  cyc3evpm  31426  cycpmconjslem2  31431  cyc3conja  31433  dimval  31695  dimvalfi  31696  esumcst  32040  hashf2  32061  sseqmw  32367  sseqf  32368  sseqp1  32371  fiblem  32374  fibp1  32377  coinflippv  32459  erdszelem2  33163  erdszelem5  33166  erdszelem7  33168  erdszelem8  33169
  Copyright terms: Public domain W3C validator