MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashf Structured version   Visualization version   GIF version

Theorem hashf 13980
Description: The size function maps all finite sets to their cardinality, as members of 0, and infinite sets to +∞. TODO-AV: mark as OBSOLETE and replace it by hashfxnn0 13979? (Contributed by Mario Carneiro, 13-Sep-2013.) (Revised by Mario Carneiro, 13-Jul-2014.) (Proof shortened by AV, 24-Oct-2021.)
Assertion
Ref Expression
hashf ♯:V⟶(ℕ0 ∪ {+∞})

Proof of Theorem hashf
StepHypRef Expression
1 hashfxnn0 13979 . 2 ♯:V⟶ℕ0*
2 eqid 2738 . . 3 V = V
3 df-xnn0 12236 . . . 4 0* = (ℕ0 ∪ {+∞})
43eqcomi 2747 . . 3 (ℕ0 ∪ {+∞}) = ℕ0*
52, 4feq23i 6578 . 2 (♯:V⟶(ℕ0 ∪ {+∞}) ↔ ♯:V⟶ℕ0*)
61, 5mpbir 230 1 ♯:V⟶(ℕ0 ∪ {+∞})
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3422  cun 3881  {csn 4558  wf 6414  +∞cpnf 10937  0cn0 12163  0*cxnn0 12235  chash 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-hash 13973
This theorem is referenced by:  hashresfn  13982  dmhashres  13983  hashnn0pnf  13984  hashxrcl  14000  hashgt1  31030  s3clhash  31124  tocyc01  31287  cyc3evpm  31319  cycpmconjslem2  31324  cyc3conja  31326  dimval  31588  dimvalfi  31589  esumcst  31931  hashf2  31952  sseqmw  32258  sseqf  32259  sseqp1  32262  fiblem  32265  fibp1  32268  coinflippv  32350  erdszelem2  33054  erdszelem5  33057  erdszelem7  33059  erdszelem8  33060
  Copyright terms: Public domain W3C validator