| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-xr | Structured version Visualization version GIF version | ||
| Description: Define the set of extended reals that includes plus and minus infinity. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 13-Oct-2005.) |
| Ref | Expression |
|---|---|
| df-xr | ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cxr 11137 | . 2 class ℝ* | |
| 2 | cr 10997 | . . 3 class ℝ | |
| 3 | cpnf 11135 | . . . 4 class +∞ | |
| 4 | cmnf 11136 | . . . 4 class -∞ | |
| 5 | 3, 4 | cpr 4576 | . . 3 class {+∞, -∞} |
| 6 | 2, 5 | cun 3898 | . 2 class (ℝ ∪ {+∞, -∞}) |
| 7 | 1, 6 | wceq 1541 | 1 wff ℝ* = (ℝ ∪ {+∞, -∞}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: ressxr 11148 pnfxr 11158 mnfxr 11161 ltrelxr 11165 ssxr 11174 xrex 12877 elxr 13007 climxlim2lem 45862 |
| Copyright terms: Public domain | W3C validator |