| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-xr | Structured version Visualization version GIF version | ||
| Description: Define the set of extended reals that includes plus and minus infinity. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 13-Oct-2005.) |
| Ref | Expression |
|---|---|
| df-xr | ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cxr 11266 | . 2 class ℝ* | |
| 2 | cr 11126 | . . 3 class ℝ | |
| 3 | cpnf 11264 | . . . 4 class +∞ | |
| 4 | cmnf 11265 | . . . 4 class -∞ | |
| 5 | 3, 4 | cpr 4603 | . . 3 class {+∞, -∞} |
| 6 | 2, 5 | cun 3924 | . 2 class (ℝ ∪ {+∞, -∞}) |
| 7 | 1, 6 | wceq 1540 | 1 wff ℝ* = (ℝ ∪ {+∞, -∞}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: ressxr 11277 pnfxr 11287 mnfxr 11290 ltrelxr 11294 ssxr 11302 xrex 13001 elxr 13130 climxlim2lem 45822 |
| Copyright terms: Public domain | W3C validator |