MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0ssxnn0 Structured version   Visualization version   GIF version

Theorem nn0ssxnn0 12238
Description: The standard nonnegative integers are a subset of the extended nonnegative integers. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
nn0ssxnn0 0 ⊆ ℕ0*

Proof of Theorem nn0ssxnn0
StepHypRef Expression
1 ssun1 4102 . 2 0 ⊆ (ℕ0 ∪ {+∞})
2 df-xnn0 12236 . 2 0* = (ℕ0 ∪ {+∞})
31, 2sseqtrri 3954 1 0 ⊆ ℕ0*
Colors of variables: wff setvar class
Syntax hints:  cun 3881  wss 3883  {csn 4558  +∞cpnf 10937  0cn0 12163  0*cxnn0 12235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-un 3888  df-in 3890  df-ss 3900  df-xnn0 12236
This theorem is referenced by:  nn0xnn0  12239  0xnn0  12241  nn0xnn0d  12244
  Copyright terms: Public domain W3C validator