MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0ssxnn0 Structured version   Visualization version   GIF version

Theorem nn0ssxnn0 12593
Description: The standard nonnegative integers are a subset of the extended nonnegative integers. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
nn0ssxnn0 0 ⊆ ℕ0*

Proof of Theorem nn0ssxnn0
StepHypRef Expression
1 ssun1 4170 . 2 0 ⊆ (ℕ0 ∪ {+∞})
2 df-xnn0 12591 . 2 0* = (ℕ0 ∪ {+∞})
31, 2sseqtrri 4016 1 0 ⊆ ℕ0*
Colors of variables: wff setvar class
Syntax hints:  cun 3944  wss 3946  {csn 4623  +∞cpnf 11286  0cn0 12518  0*cxnn0 12590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-v 3464  df-un 3951  df-ss 3963  df-xnn0 12591
This theorem is referenced by:  nn0xnn0  12594  0xnn0  12596  nn0xnn0d  12599
  Copyright terms: Public domain W3C validator