MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0ssxnn0 Structured version   Visualization version   GIF version

Theorem nn0ssxnn0 12308
Description: The standard nonnegative integers are a subset of the extended nonnegative integers. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
nn0ssxnn0 0 ⊆ ℕ0*

Proof of Theorem nn0ssxnn0
StepHypRef Expression
1 ssun1 4106 . 2 0 ⊆ (ℕ0 ∪ {+∞})
2 df-xnn0 12306 . 2 0* = (ℕ0 ∪ {+∞})
31, 2sseqtrri 3958 1 0 ⊆ ℕ0*
Colors of variables: wff setvar class
Syntax hints:  cun 3885  wss 3887  {csn 4561  +∞cpnf 11006  0cn0 12233  0*cxnn0 12305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-un 3892  df-in 3894  df-ss 3904  df-xnn0 12306
This theorem is referenced by:  nn0xnn0  12309  0xnn0  12311  nn0xnn0d  12314
  Copyright terms: Public domain W3C validator