![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0ssxnn0 | Structured version Visualization version GIF version |
Description: The standard nonnegative integers are a subset of the extended nonnegative integers. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
nn0ssxnn0 | ⊢ ℕ0 ⊆ ℕ0* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4170 | . 2 ⊢ ℕ0 ⊆ (ℕ0 ∪ {+∞}) | |
2 | df-xnn0 12591 | . 2 ⊢ ℕ0* = (ℕ0 ∪ {+∞}) | |
3 | 1, 2 | sseqtrri 4016 | 1 ⊢ ℕ0 ⊆ ℕ0* |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3944 ⊆ wss 3946 {csn 4623 +∞cpnf 11286 ℕ0cn0 12518 ℕ0*cxnn0 12590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-v 3464 df-un 3951 df-ss 3963 df-xnn0 12591 |
This theorem is referenced by: nn0xnn0 12594 0xnn0 12596 nn0xnn0d 12599 |
Copyright terms: Public domain | W3C validator |