MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0ssxnn0 Structured version   Visualization version   GIF version

Theorem nn0ssxnn0 12543
Description: The standard nonnegative integers are a subset of the extended nonnegative integers. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
nn0ssxnn0 0 ⊆ ℕ0*

Proof of Theorem nn0ssxnn0
StepHypRef Expression
1 ssun1 4164 . 2 0 ⊆ (ℕ0 ∪ {+∞})
2 df-xnn0 12541 . 2 0* = (ℕ0 ∪ {+∞})
31, 2sseqtrri 4011 1 0 ⊆ ℕ0*
Colors of variables: wff setvar class
Syntax hints:  cun 3938  wss 3940  {csn 4620  +∞cpnf 11241  0cn0 12468  0*cxnn0 12540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-v 3468  df-un 3945  df-in 3947  df-ss 3957  df-xnn0 12541
This theorem is referenced by:  nn0xnn0  12544  0xnn0  12546  nn0xnn0d  12549
  Copyright terms: Public domain W3C validator