MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0ssxnn0 Structured version   Visualization version   GIF version

Theorem nn0ssxnn0 12628
Description: The standard nonnegative integers are a subset of the extended nonnegative integers. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
nn0ssxnn0 0 ⊆ ℕ0*

Proof of Theorem nn0ssxnn0
StepHypRef Expression
1 ssun1 4201 . 2 0 ⊆ (ℕ0 ∪ {+∞})
2 df-xnn0 12626 . 2 0* = (ℕ0 ∪ {+∞})
31, 2sseqtrri 4046 1 0 ⊆ ℕ0*
Colors of variables: wff setvar class
Syntax hints:  cun 3974  wss 3976  {csn 4648  +∞cpnf 11321  0cn0 12553  0*cxnn0 12625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-un 3981  df-ss 3993  df-xnn0 12626
This theorem is referenced by:  nn0xnn0  12629  0xnn0  12631  nn0xnn0d  12634
  Copyright terms: Public domain W3C validator