MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0ssxnn0 Structured version   Visualization version   GIF version

Theorem nn0ssxnn0 12452
Description: The standard nonnegative integers are a subset of the extended nonnegative integers. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
nn0ssxnn0 0 ⊆ ℕ0*

Proof of Theorem nn0ssxnn0
StepHypRef Expression
1 ssun1 4123 . 2 0 ⊆ (ℕ0 ∪ {+∞})
2 df-xnn0 12450 . 2 0* = (ℕ0 ∪ {+∞})
31, 2sseqtrri 3979 1 0 ⊆ ℕ0*
Colors of variables: wff setvar class
Syntax hints:  cun 3895  wss 3897  {csn 4571  +∞cpnf 11138  0cn0 12376  0*cxnn0 12449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3902  df-ss 3914  df-xnn0 12450
This theorem is referenced by:  nn0xnn0  12453  0xnn0  12455  nn0xnn0d  12458
  Copyright terms: Public domain W3C validator