MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0ssxnn0 Structured version   Visualization version   GIF version

Theorem nn0ssxnn0 12582
Description: The standard nonnegative integers are a subset of the extended nonnegative integers. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
nn0ssxnn0 0 ⊆ ℕ0*

Proof of Theorem nn0ssxnn0
StepHypRef Expression
1 ssun1 4158 . 2 0 ⊆ (ℕ0 ∪ {+∞})
2 df-xnn0 12580 . 2 0* = (ℕ0 ∪ {+∞})
31, 2sseqtrri 4013 1 0 ⊆ ℕ0*
Colors of variables: wff setvar class
Syntax hints:  cun 3929  wss 3931  {csn 4606  +∞cpnf 11271  0cn0 12506  0*cxnn0 12579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-un 3936  df-ss 3948  df-xnn0 12580
This theorem is referenced by:  nn0xnn0  12583  0xnn0  12585  nn0xnn0d  12588
  Copyright terms: Public domain W3C validator