| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xchbinxr | Structured version Visualization version GIF version | ||
| Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
| Ref | Expression |
|---|---|
| xchbinxr.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
| xchbinxr.2 | ⊢ (𝜒 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| xchbinxr | ⊢ (𝜑 ↔ ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xchbinxr.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
| 2 | xchbinxr.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 2 | bicomi 224 | . 2 ⊢ (𝜓 ↔ 𝜒) |
| 4 | 1, 3 | xchbinx 334 | 1 ⊢ (𝜑 ↔ ¬ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: con2bii 357 2nalexn 1828 2exnaln 1829 sbn 2280 ralnex 3062 rexanali 3091 r2exlem 3129 dfss6 3948 nss 4023 difdif 4110 indifdi 4269 difab 4285 neq0 4327 ssdif0 4341 difin0ss 4348 sbcnel12g 4389 disjsn 4687 iundif2 5050 iindif2 5053 brsymdif 5178 rexxfr 5386 nssss 5430 reldm0 5907 domtriord 9137 rnelfmlem 23890 dchrfi 27218 noinfbnd1lem4 27690 wwlksnext 29875 dff15 35115 df3nandALT2 36418 wl-3xornot1 37498 poimirlem1 37645 dvasin 37728 lcvbr3 39041 cvrval2 39292 hashnexinj 42141 wopprc 43054 onsucf1olem 43294 sqrtcvallem1 43655 gneispace 44158 iindif2f 45184 aiota0ndef 47126 isubgr3stgrlem3 47980 |
| Copyright terms: Public domain | W3C validator |