![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xchbinxr | Structured version Visualization version GIF version |
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
Ref | Expression |
---|---|
xchbinxr.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
xchbinxr.2 | ⊢ (𝜒 ↔ 𝜓) |
Ref | Expression |
---|---|
xchbinxr | ⊢ (𝜑 ↔ ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xchbinxr.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
2 | xchbinxr.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 2 | bicomi 224 | . 2 ⊢ (𝜓 ↔ 𝜒) |
4 | 1, 3 | xchbinx 334 | 1 ⊢ (𝜑 ↔ ¬ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: con2bii 357 2nalexn 1824 2exnaln 1825 sbn 2278 ralnex 3069 rexanali 3099 r2exlem 3140 nelbOLD 3232 dfss6 3984 nss 4059 difdif 4144 indifdi 4299 difab 4315 neq0 4357 ssdif0 4371 difin0ss 4378 sbcnel12g 4419 disjsn 4715 iundif2 5078 iindif2 5081 brsymdif 5206 rexxfr 5421 nssss 5465 reldm0 5940 domtriord 9161 rnelfmlem 23975 dchrfi 27313 noinfbnd1lem4 27785 wwlksnext 29922 dff15 35076 df3nandALT2 36382 wl-3xornot1 37462 poimirlem1 37607 dvasin 37690 lcvbr3 39004 cvrval2 39255 hashnexinj 42109 wopprc 43018 onsucf1olem 43259 sqrtcvallem1 43620 gneispace 44123 iindif2f 45102 aiota0ndef 47046 isubgr3stgrlem3 47870 |
Copyright terms: Public domain | W3C validator |