| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xchbinxr | Structured version Visualization version GIF version | ||
| Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
| Ref | Expression |
|---|---|
| xchbinxr.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
| xchbinxr.2 | ⊢ (𝜒 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| xchbinxr | ⊢ (𝜑 ↔ ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xchbinxr.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
| 2 | xchbinxr.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 2 | bicomi 224 | . 2 ⊢ (𝜓 ↔ 𝜒) |
| 4 | 1, 3 | xchbinx 334 | 1 ⊢ (𝜑 ↔ ¬ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: con2bii 357 2nalexn 1828 2exnaln 1829 sbn 2280 ralnex 3056 rexanali 3085 r2exlem 3123 dfss6 3939 nss 4014 difdif 4101 indifdi 4260 difab 4276 neq0 4318 ssdif0 4332 difin0ss 4339 sbcnel12g 4380 disjsn 4678 iundif2 5041 iindif2 5044 brsymdif 5169 rexxfr 5374 nssss 5418 reldm0 5894 domtriord 9093 rnelfmlem 23846 dchrfi 27173 noinfbnd1lem4 27645 wwlksnext 29830 dff15 35081 df3nandALT2 36395 wl-3xornot1 37475 poimirlem1 37622 dvasin 37705 lcvbr3 39023 cvrval2 39274 hashnexinj 42123 wopprc 43026 onsucf1olem 43266 sqrtcvallem1 43627 gneispace 44130 iindif2f 45161 aiota0ndef 47102 isubgr3stgrlem3 47971 |
| Copyright terms: Public domain | W3C validator |