MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xchbinxr Structured version   Visualization version   GIF version

Theorem xchbinxr 335
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.)
Hypotheses
Ref Expression
xchbinxr.1 (𝜑 ↔ ¬ 𝜓)
xchbinxr.2 (𝜒𝜓)
Assertion
Ref Expression
xchbinxr (𝜑 ↔ ¬ 𝜒)

Proof of Theorem xchbinxr
StepHypRef Expression
1 xchbinxr.1 . 2 (𝜑 ↔ ¬ 𝜓)
2 xchbinxr.2 . . 3 (𝜒𝜓)
32bicomi 224 . 2 (𝜓𝜒)
41, 3xchbinx 334 1 (𝜑 ↔ ¬ 𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  con2bii  357  2nalexn  1828  2exnaln  1829  sbn  2280  ralnex  3055  rexanali  3083  r2exlem  3118  dfss6  3927  nss  4002  difdif  4088  indifdi  4247  difab  4263  neq0  4305  ssdif0  4319  difin0ss  4326  sbcnel12g  4367  disjsn  4665  iundif2  5026  iindif2  5029  brsymdif  5154  rexxfr  5358  nssss  5402  reldm0  5874  domtriord  9047  rnelfmlem  23855  dchrfi  27182  noinfbnd1lem4  27654  wwlksnext  29856  dff15  35050  df3nandALT2  36373  wl-3xornot1  37453  poimirlem1  37600  dvasin  37683  lcvbr3  39001  cvrval2  39252  hashnexinj  42101  wopprc  43003  onsucf1olem  43243  sqrtcvallem1  43604  gneispace  44107  iindif2f  45138  aiota0ndef  47082  isubgr3stgrlem3  47953
  Copyright terms: Public domain W3C validator