| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xchbinxr | Structured version Visualization version GIF version | ||
| Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
| Ref | Expression |
|---|---|
| xchbinxr.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
| xchbinxr.2 | ⊢ (𝜒 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| xchbinxr | ⊢ (𝜑 ↔ ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xchbinxr.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
| 2 | xchbinxr.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 2 | bicomi 224 | . 2 ⊢ (𝜓 ↔ 𝜒) |
| 4 | 1, 3 | xchbinx 334 | 1 ⊢ (𝜑 ↔ ¬ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: con2bii 357 2nalexn 1829 2exnaln 1830 sbn 2284 ralnex 3059 rexanali 3087 r2exlem 3122 dfss6 3920 nss 3995 difdif 4084 indifdi 4243 difab 4259 neq0 4301 ssdif0 4315 difin0ss 4322 sbcnel12g 4363 disjsn 4663 iundif2 5024 iindif2 5027 brsymdif 5152 rexxfr 5356 nssss 5398 reldm0 5872 domtriord 9043 rnelfmlem 23868 dchrfi 27194 noinfbnd1lem4 27666 wwlksnext 29873 dff15 35117 df3nandALT2 36465 wl-3xornot1 37545 poimirlem1 37681 dvasin 37764 lcvbr3 39142 cvrval2 39393 hashnexinj 42241 wopprc 43147 onsucf1olem 43387 sqrtcvallem1 43748 gneispace 44251 iindif2f 45281 aiota0ndef 47221 isubgr3stgrlem3 48092 |
| Copyright terms: Public domain | W3C validator |