MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xchbinxr Structured version   Visualization version   GIF version

Theorem xchbinxr 335
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.)
Hypotheses
Ref Expression
xchbinxr.1 (𝜑 ↔ ¬ 𝜓)
xchbinxr.2 (𝜒𝜓)
Assertion
Ref Expression
xchbinxr (𝜑 ↔ ¬ 𝜒)

Proof of Theorem xchbinxr
StepHypRef Expression
1 xchbinxr.1 . 2 (𝜑 ↔ ¬ 𝜓)
2 xchbinxr.2 . . 3 (𝜒𝜓)
32bicomi 223 . 2 (𝜓𝜒)
41, 3xchbinx 334 1 (𝜑 ↔ ¬ 𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  con2bii  358  2nalexn  1830  2exnaln  1831  sbn  2277  ralnex  3167  rexanali  3192  nelbOLD  3196  r2exlem  3231  dfss6  3910  nss  3983  difdif  4065  indifdi  4217  difab  4234  neq0  4279  ssdif0  4297  difin0ss  4302  sbcnel12g  4345  disjsn  4647  iundif2  5003  iindif2  5006  brsymdif  5133  rexxfr  5339  nssss  5371  reldm0  5837  domtriord  8910  rnelfmlem  23103  dchrfi  26403  wwlksnext  28258  dff15  33056  noinfbnd1lem4  33929  df3nandALT2  34589  wl-3xornot1  35651  poimirlem1  35778  dvasin  35861  lcvbr3  37037  cvrval2  37288  wopprc  40852  sqrtcvallem1  41239  gneispace  41744  aiota0ndef  44589
  Copyright terms: Public domain W3C validator