Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xchbinxr | Structured version Visualization version GIF version |
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
Ref | Expression |
---|---|
xchbinxr.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
xchbinxr.2 | ⊢ (𝜒 ↔ 𝜓) |
Ref | Expression |
---|---|
xchbinxr | ⊢ (𝜑 ↔ ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xchbinxr.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
2 | xchbinxr.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 2 | bicomi 223 | . 2 ⊢ (𝜓 ↔ 𝜒) |
4 | 1, 3 | xchbinx 334 | 1 ⊢ (𝜑 ↔ ¬ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: con2bii 358 2nalexn 1830 2exnaln 1831 sbn 2277 ralnex 3167 rexanali 3192 nelbOLD 3196 r2exlem 3231 dfss6 3910 nss 3983 difdif 4065 indifdi 4217 difab 4234 neq0 4279 ssdif0 4297 difin0ss 4302 sbcnel12g 4345 disjsn 4647 iundif2 5003 iindif2 5006 brsymdif 5133 rexxfr 5339 nssss 5371 reldm0 5837 domtriord 8910 rnelfmlem 23103 dchrfi 26403 wwlksnext 28258 dff15 33056 noinfbnd1lem4 33929 df3nandALT2 34589 wl-3xornot1 35651 poimirlem1 35778 dvasin 35861 lcvbr3 37037 cvrval2 37288 wopprc 40852 sqrtcvallem1 41239 gneispace 41744 aiota0ndef 44589 |
Copyright terms: Public domain | W3C validator |