![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xchbinxr | Structured version Visualization version GIF version |
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
Ref | Expression |
---|---|
xchbinxr.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
xchbinxr.2 | ⊢ (𝜒 ↔ 𝜓) |
Ref | Expression |
---|---|
xchbinxr | ⊢ (𝜑 ↔ ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xchbinxr.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
2 | xchbinxr.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 2 | bicomi 224 | . 2 ⊢ (𝜓 ↔ 𝜒) |
4 | 1, 3 | xchbinx 334 | 1 ⊢ (𝜑 ↔ ¬ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: con2bii 357 2nalexn 1826 2exnaln 1827 sbn 2284 ralnex 3078 rexanali 3108 r2exlem 3149 nelbOLD 3241 dfss6 3998 nss 4073 difdif 4158 indifdi 4313 difab 4329 neq0 4375 ssdif0 4389 difin0ss 4396 sbcnel12g 4437 disjsn 4736 iundif2 5097 iindif2 5100 brsymdif 5225 rexxfr 5434 nssss 5475 reldm0 5952 domtriord 9189 rnelfmlem 23981 dchrfi 27317 noinfbnd1lem4 27789 wwlksnext 29926 dff15 35060 df3nandALT2 36366 wl-3xornot1 37446 poimirlem1 37581 dvasin 37664 lcvbr3 38979 cvrval2 39230 hashnexinj 42085 wopprc 42987 onsucf1olem 43232 sqrtcvallem1 43593 gneispace 44096 iindif2f 45065 aiota0ndef 47012 |
Copyright terms: Public domain | W3C validator |