Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xchbinxr | Structured version Visualization version GIF version |
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
Ref | Expression |
---|---|
xchbinxr.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
xchbinxr.2 | ⊢ (𝜒 ↔ 𝜓) |
Ref | Expression |
---|---|
xchbinxr | ⊢ (𝜑 ↔ ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xchbinxr.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
2 | xchbinxr.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 2 | bicomi 223 | . 2 ⊢ (𝜓 ↔ 𝜒) |
4 | 1, 3 | xchbinx 333 | 1 ⊢ (𝜑 ↔ ¬ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: con2bii 357 2nalexn 1831 2exnaln 1832 sbn 2280 ralnex 3163 rexanali 3191 nelbOLD 3195 r2exlem 3230 dfss6 3906 nss 3979 difdif 4061 indifdi 4214 difab 4231 neq0 4276 ssdif0 4294 difin0ss 4299 sbcnel12g 4342 disjsn 4644 iundif2 4999 iindif2 5002 brsymdif 5129 rexxfr 5334 nssss 5365 reldm0 5826 domtriord 8859 rnelfmlem 23011 dchrfi 26308 wwlksnext 28159 dff15 32956 noinfbnd1lem4 33856 df3nandALT2 34516 wl-3xornot1 35578 poimirlem1 35705 dvasin 35788 lcvbr3 36964 cvrval2 37215 wopprc 40768 sqrtcvallem1 41128 gneispace 41633 aiota0ndef 44476 |
Copyright terms: Public domain | W3C validator |