| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xchbinxr | Structured version Visualization version GIF version | ||
| Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
| Ref | Expression |
|---|---|
| xchbinxr.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
| xchbinxr.2 | ⊢ (𝜒 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| xchbinxr | ⊢ (𝜑 ↔ ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xchbinxr.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
| 2 | xchbinxr.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 2 | bicomi 224 | . 2 ⊢ (𝜓 ↔ 𝜒) |
| 4 | 1, 3 | xchbinx 334 | 1 ⊢ (𝜑 ↔ ¬ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: con2bii 357 2nalexn 1829 2exnaln 1830 sbn 2282 ralnex 3058 rexanali 3086 r2exlem 3121 dfss6 3924 nss 3999 difdif 4085 indifdi 4244 difab 4260 neq0 4302 ssdif0 4316 difin0ss 4323 sbcnel12g 4364 disjsn 4664 iundif2 5022 iindif2 5025 brsymdif 5150 rexxfr 5354 nssss 5396 reldm0 5868 domtriord 9036 rnelfmlem 23865 dchrfi 27191 noinfbnd1lem4 27663 wwlksnext 29869 dff15 35091 df3nandALT2 36433 wl-3xornot1 37513 poimirlem1 37660 dvasin 37743 lcvbr3 39061 cvrval2 39312 hashnexinj 42160 wopprc 43062 onsucf1olem 43302 sqrtcvallem1 43663 gneispace 44166 iindif2f 45196 aiota0ndef 47127 isubgr3stgrlem3 47998 |
| Copyright terms: Public domain | W3C validator |