MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xchbinxr Structured version   Visualization version   GIF version

Theorem xchbinxr 335
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.)
Hypotheses
Ref Expression
xchbinxr.1 (𝜑 ↔ ¬ 𝜓)
xchbinxr.2 (𝜒𝜓)
Assertion
Ref Expression
xchbinxr (𝜑 ↔ ¬ 𝜒)

Proof of Theorem xchbinxr
StepHypRef Expression
1 xchbinxr.1 . 2 (𝜑 ↔ ¬ 𝜓)
2 xchbinxr.2 . . 3 (𝜒𝜓)
32bicomi 224 . 2 (𝜓𝜒)
41, 3xchbinx 334 1 (𝜑 ↔ ¬ 𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  con2bii  357  2nalexn  1828  2exnaln  1829  sbn  2280  ralnex  3055  rexanali  3084  r2exlem  3122  dfss6  3936  nss  4011  difdif  4098  indifdi  4257  difab  4273  neq0  4315  ssdif0  4329  difin0ss  4336  sbcnel12g  4377  disjsn  4675  iundif2  5038  iindif2  5041  brsymdif  5166  rexxfr  5371  nssss  5415  reldm0  5891  domtriord  9087  rnelfmlem  23839  dchrfi  27166  noinfbnd1lem4  27638  wwlksnext  29823  dff15  35074  df3nandALT2  36388  wl-3xornot1  37468  poimirlem1  37615  dvasin  37698  lcvbr3  39016  cvrval2  39267  hashnexinj  42116  wopprc  43019  onsucf1olem  43259  sqrtcvallem1  43620  gneispace  44123  iindif2f  45154  aiota0ndef  47098  isubgr3stgrlem3  47967
  Copyright terms: Public domain W3C validator