| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xchbinxr | Structured version Visualization version GIF version | ||
| Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
| Ref | Expression |
|---|---|
| xchbinxr.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
| xchbinxr.2 | ⊢ (𝜒 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| xchbinxr | ⊢ (𝜑 ↔ ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xchbinxr.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
| 2 | xchbinxr.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 2 | bicomi 224 | . 2 ⊢ (𝜓 ↔ 𝜒) |
| 4 | 1, 3 | xchbinx 334 | 1 ⊢ (𝜑 ↔ ¬ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: con2bii 357 2nalexn 1828 2exnaln 1829 sbn 2280 ralnex 3055 rexanali 3084 r2exlem 3122 dfss6 3936 nss 4011 difdif 4098 indifdi 4257 difab 4273 neq0 4315 ssdif0 4329 difin0ss 4336 sbcnel12g 4377 disjsn 4675 iundif2 5038 iindif2 5041 brsymdif 5166 rexxfr 5371 nssss 5415 reldm0 5891 domtriord 9087 rnelfmlem 23839 dchrfi 27166 noinfbnd1lem4 27638 wwlksnext 29823 dff15 35074 df3nandALT2 36388 wl-3xornot1 37468 poimirlem1 37615 dvasin 37698 lcvbr3 39016 cvrval2 39267 hashnexinj 42116 wopprc 43019 onsucf1olem 43259 sqrtcvallem1 43620 gneispace 44123 iindif2f 45154 aiota0ndef 47098 isubgr3stgrlem3 47967 |
| Copyright terms: Public domain | W3C validator |