MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xchbinxr Structured version   Visualization version   GIF version

Theorem xchbinxr 334
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.)
Hypotheses
Ref Expression
xchbinxr.1 (𝜑 ↔ ¬ 𝜓)
xchbinxr.2 (𝜒𝜓)
Assertion
Ref Expression
xchbinxr (𝜑 ↔ ¬ 𝜒)

Proof of Theorem xchbinxr
StepHypRef Expression
1 xchbinxr.1 . 2 (𝜑 ↔ ¬ 𝜓)
2 xchbinxr.2 . . 3 (𝜒𝜓)
32bicomi 223 . 2 (𝜓𝜒)
41, 3xchbinx 333 1 (𝜑 ↔ ¬ 𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  con2bii  357  2nalexn  1831  2exnaln  1832  sbn  2280  ralnex  3163  rexanali  3191  nelbOLD  3195  r2exlem  3230  dfss6  3906  nss  3979  difdif  4061  indifdi  4214  difab  4231  neq0  4276  ssdif0  4294  difin0ss  4299  sbcnel12g  4342  disjsn  4644  iundif2  4999  iindif2  5002  brsymdif  5129  rexxfr  5334  nssss  5365  reldm0  5826  domtriord  8859  rnelfmlem  23011  dchrfi  26308  wwlksnext  28159  dff15  32956  noinfbnd1lem4  33856  df3nandALT2  34516  wl-3xornot1  35578  poimirlem1  35705  dvasin  35788  lcvbr3  36964  cvrval2  37215  wopprc  40768  sqrtcvallem1  41128  gneispace  41633  aiota0ndef  44476
  Copyright terms: Public domain W3C validator