| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xchbinxr | Structured version Visualization version GIF version | ||
| Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
| Ref | Expression |
|---|---|
| xchbinxr.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
| xchbinxr.2 | ⊢ (𝜒 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| xchbinxr | ⊢ (𝜑 ↔ ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xchbinxr.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
| 2 | xchbinxr.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 2 | bicomi 224 | . 2 ⊢ (𝜓 ↔ 𝜒) |
| 4 | 1, 3 | xchbinx 334 | 1 ⊢ (𝜑 ↔ ¬ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: con2bii 357 2nalexn 1828 2exnaln 1829 sbn 2280 ralnex 3055 rexanali 3083 r2exlem 3118 dfss6 3927 nss 4002 difdif 4088 indifdi 4247 difab 4263 neq0 4305 ssdif0 4319 difin0ss 4326 sbcnel12g 4367 disjsn 4665 iundif2 5026 iindif2 5029 brsymdif 5154 rexxfr 5358 nssss 5402 reldm0 5874 domtriord 9047 rnelfmlem 23855 dchrfi 27182 noinfbnd1lem4 27654 wwlksnext 29856 dff15 35050 df3nandALT2 36373 wl-3xornot1 37453 poimirlem1 37600 dvasin 37683 lcvbr3 39001 cvrval2 39252 hashnexinj 42101 wopprc 43003 onsucf1olem 43243 sqrtcvallem1 43604 gneispace 44107 iindif2f 45138 aiota0ndef 47082 isubgr3stgrlem3 47953 |
| Copyright terms: Public domain | W3C validator |