| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e222 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e222.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
| e222.2 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) |
| e222.3 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) |
| e222.4 | ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) |
| Ref | Expression |
|---|---|
| e222 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e222.3 | . . . . . . 7 ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) | |
| 2 | 1 | dfvd2i 44577 | . . . . . 6 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| 3 | 2 | imp 406 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) |
| 4 | e222.1 | . . . . . . . . 9 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
| 5 | 4 | dfvd2i 44577 | . . . . . . . 8 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 6 | 5 | imp 406 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 7 | e222.2 | . . . . . . . . 9 ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) | |
| 8 | 7 | dfvd2i 44577 | . . . . . . . 8 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 9 | 8 | imp 406 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| 10 | e222.4 | . . . . . . 7 ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) | |
| 11 | 6, 9, 10 | syl2im 40 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) → (𝜏 → 𝜂))) |
| 12 | 11 | pm2.43i 52 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → (𝜏 → 𝜂)) |
| 13 | 3, 12 | syl5com 31 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) → 𝜂)) |
| 14 | 13 | pm2.43i 52 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜂) |
| 15 | 14 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → 𝜂)) |
| 16 | 15 | dfvd2ir 44578 | 1 ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ( wvd2 44569 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-vd2 44570 |
| This theorem is referenced by: e220 44629 e202 44631 e022 44633 e002 44635 e020 44637 e200 44639 e221 44641 e212 44643 e122 44645 e112 44646 e121 44648 e211 44649 e22 44663 suctrALT2VD 44827 en3lplem2VD 44835 19.21a3con13vVD 44843 tratrbVD 44852 |
| Copyright terms: Public domain | W3C validator |