Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e222 Structured version   Visualization version   GIF version

Theorem e222 43397
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e222.1 (   𝜑   ,   𝜓   ▶   𝜒   )
e222.2 (   𝜑   ,   𝜓   ▶   𝜃   )
e222.3 (   𝜑   ,   𝜓   ▶   𝜏   )
e222.4 (𝜒 → (𝜃 → (𝜏𝜂)))
Assertion
Ref Expression
e222 (   𝜑   ,   𝜓   ▶   𝜂   )

Proof of Theorem e222
StepHypRef Expression
1 e222.3 . . . . . . 7 (   𝜑   ,   𝜓   ▶   𝜏   )
21dfvd2i 43346 . . . . . 6 (𝜑 → (𝜓𝜏))
32imp 408 . . . . 5 ((𝜑𝜓) → 𝜏)
4 e222.1 . . . . . . . . 9 (   𝜑   ,   𝜓   ▶   𝜒   )
54dfvd2i 43346 . . . . . . . 8 (𝜑 → (𝜓𝜒))
65imp 408 . . . . . . 7 ((𝜑𝜓) → 𝜒)
7 e222.2 . . . . . . . . 9 (   𝜑   ,   𝜓   ▶   𝜃   )
87dfvd2i 43346 . . . . . . . 8 (𝜑 → (𝜓𝜃))
98imp 408 . . . . . . 7 ((𝜑𝜓) → 𝜃)
10 e222.4 . . . . . . 7 (𝜒 → (𝜃 → (𝜏𝜂)))
116, 9, 10syl2im 40 . . . . . 6 ((𝜑𝜓) → ((𝜑𝜓) → (𝜏𝜂)))
1211pm2.43i 52 . . . . 5 ((𝜑𝜓) → (𝜏𝜂))
133, 12syl5com 31 . . . 4 ((𝜑𝜓) → ((𝜑𝜓) → 𝜂))
1413pm2.43i 52 . . 3 ((𝜑𝜓) → 𝜂)
1514ex 414 . 2 (𝜑 → (𝜓𝜂))
1615dfvd2ir 43347 1 (   𝜑   ,   𝜓   ▶   𝜂   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  (   wvd2 43338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-vd2 43339
This theorem is referenced by:  e220  43398  e202  43400  e022  43402  e002  43404  e020  43406  e200  43408  e221  43410  e212  43412  e122  43414  e112  43415  e121  43417  e211  43418  e22  43432  suctrALT2VD  43597  en3lplem2VD  43605  19.21a3con13vVD  43613  tratrbVD  43622
  Copyright terms: Public domain W3C validator