| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e222 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e222.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
| e222.2 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) |
| e222.3 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) |
| e222.4 | ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) |
| Ref | Expression |
|---|---|
| e222 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e222.3 | . . . . . . 7 ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) | |
| 2 | 1 | dfvd2i 44568 | . . . . . 6 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| 3 | 2 | imp 406 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) |
| 4 | e222.1 | . . . . . . . . 9 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
| 5 | 4 | dfvd2i 44568 | . . . . . . . 8 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 6 | 5 | imp 406 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 7 | e222.2 | . . . . . . . . 9 ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) | |
| 8 | 7 | dfvd2i 44568 | . . . . . . . 8 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 9 | 8 | imp 406 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| 10 | e222.4 | . . . . . . 7 ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) | |
| 11 | 6, 9, 10 | syl2im 40 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) → (𝜏 → 𝜂))) |
| 12 | 11 | pm2.43i 52 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → (𝜏 → 𝜂)) |
| 13 | 3, 12 | syl5com 31 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) → 𝜂)) |
| 14 | 13 | pm2.43i 52 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜂) |
| 15 | 14 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → 𝜂)) |
| 16 | 15 | dfvd2ir 44569 | 1 ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ( wvd2 44560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-vd2 44561 |
| This theorem is referenced by: e220 44620 e202 44622 e022 44624 e002 44626 e020 44628 e200 44630 e221 44632 e212 44634 e122 44636 e112 44637 e121 44639 e211 44640 e22 44654 suctrALT2VD 44818 en3lplem2VD 44826 19.21a3con13vVD 44834 tratrbVD 44843 |
| Copyright terms: Public domain | W3C validator |