| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e222 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e222.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
| e222.2 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) |
| e222.3 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) |
| e222.4 | ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) |
| Ref | Expression |
|---|---|
| e222 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e222.3 | . . . . . . 7 ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) | |
| 2 | 1 | dfvd2i 44575 | . . . . . 6 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| 3 | 2 | imp 406 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) |
| 4 | e222.1 | . . . . . . . . 9 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
| 5 | 4 | dfvd2i 44575 | . . . . . . . 8 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 6 | 5 | imp 406 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 7 | e222.2 | . . . . . . . . 9 ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) | |
| 8 | 7 | dfvd2i 44575 | . . . . . . . 8 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 9 | 8 | imp 406 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| 10 | e222.4 | . . . . . . 7 ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) | |
| 11 | 6, 9, 10 | syl2im 40 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) → (𝜏 → 𝜂))) |
| 12 | 11 | pm2.43i 52 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → (𝜏 → 𝜂)) |
| 13 | 3, 12 | syl5com 31 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) → 𝜂)) |
| 14 | 13 | pm2.43i 52 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜂) |
| 15 | 14 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → 𝜂)) |
| 16 | 15 | dfvd2ir 44576 | 1 ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ( wvd2 44567 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-vd2 44568 |
| This theorem is referenced by: e220 44627 e202 44629 e022 44631 e002 44633 e020 44635 e200 44637 e221 44639 e212 44641 e122 44643 e112 44644 e121 44646 e211 44647 e22 44661 suctrALT2VD 44825 en3lplem2VD 44833 19.21a3con13vVD 44841 tratrbVD 44850 |
| Copyright terms: Public domain | W3C validator |