![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > e222 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e222.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
e222.2 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) |
e222.3 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) |
e222.4 | ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) |
Ref | Expression |
---|---|
e222 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e222.3 | . . . . . . 7 ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) | |
2 | 1 | dfvd2i 39749 | . . . . . 6 ⊢ (𝜑 → (𝜓 → 𝜏)) |
3 | 2 | imp 397 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) |
4 | e222.1 | . . . . . . . . 9 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
5 | 4 | dfvd2i 39749 | . . . . . . . 8 ⊢ (𝜑 → (𝜓 → 𝜒)) |
6 | 5 | imp 397 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
7 | e222.2 | . . . . . . . . 9 ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) | |
8 | 7 | dfvd2i 39749 | . . . . . . . 8 ⊢ (𝜑 → (𝜓 → 𝜃)) |
9 | 8 | imp 397 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
10 | e222.4 | . . . . . . 7 ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) | |
11 | 6, 9, 10 | syl2im 40 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) → (𝜏 → 𝜂))) |
12 | 11 | pm2.43i 52 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → (𝜏 → 𝜂)) |
13 | 3, 12 | syl5com 31 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) → 𝜂)) |
14 | 13 | pm2.43i 52 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜂) |
15 | 14 | ex 403 | . 2 ⊢ (𝜑 → (𝜓 → 𝜂)) |
16 | 15 | dfvd2ir 39750 | 1 ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ( wvd2 39741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 387 df-vd2 39742 |
This theorem is referenced by: e220 39810 e202 39812 e022 39814 e002 39816 e020 39818 e200 39820 e221 39822 e212 39824 e122 39826 e112 39827 e121 39829 e211 39830 e22 39844 suctrALT2VD 40009 en3lplem2VD 40017 19.21a3con13vVD 40025 tratrbVD 40034 |
Copyright terms: Public domain | W3C validator |