Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > e222 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e222.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
e222.2 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) |
e222.3 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) |
e222.4 | ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) |
Ref | Expression |
---|---|
e222 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e222.3 | . . . . . . 7 ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) | |
2 | 1 | dfvd2i 42205 | . . . . . 6 ⊢ (𝜑 → (𝜓 → 𝜏)) |
3 | 2 | imp 407 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) |
4 | e222.1 | . . . . . . . . 9 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
5 | 4 | dfvd2i 42205 | . . . . . . . 8 ⊢ (𝜑 → (𝜓 → 𝜒)) |
6 | 5 | imp 407 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
7 | e222.2 | . . . . . . . . 9 ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) | |
8 | 7 | dfvd2i 42205 | . . . . . . . 8 ⊢ (𝜑 → (𝜓 → 𝜃)) |
9 | 8 | imp 407 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
10 | e222.4 | . . . . . . 7 ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) | |
11 | 6, 9, 10 | syl2im 40 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) → (𝜏 → 𝜂))) |
12 | 11 | pm2.43i 52 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → (𝜏 → 𝜂)) |
13 | 3, 12 | syl5com 31 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) → 𝜂)) |
14 | 13 | pm2.43i 52 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜂) |
15 | 14 | ex 413 | . 2 ⊢ (𝜑 → (𝜓 → 𝜂)) |
16 | 15 | dfvd2ir 42206 | 1 ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ( wvd2 42197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-vd2 42198 |
This theorem is referenced by: e220 42257 e202 42259 e022 42261 e002 42263 e020 42265 e200 42267 e221 42269 e212 42271 e122 42273 e112 42274 e121 42276 e211 42277 e22 42291 suctrALT2VD 42456 en3lplem2VD 42464 19.21a3con13vVD 42472 tratrbVD 42481 |
Copyright terms: Public domain | W3C validator |