| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e222 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e222.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
| e222.2 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) |
| e222.3 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) |
| e222.4 | ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) |
| Ref | Expression |
|---|---|
| e222 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e222.3 | . . . . . . 7 ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) | |
| 2 | 1 | dfvd2i 44548 | . . . . . 6 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| 3 | 2 | imp 406 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) |
| 4 | e222.1 | . . . . . . . . 9 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
| 5 | 4 | dfvd2i 44548 | . . . . . . . 8 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 6 | 5 | imp 406 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 7 | e222.2 | . . . . . . . . 9 ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) | |
| 8 | 7 | dfvd2i 44548 | . . . . . . . 8 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 9 | 8 | imp 406 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| 10 | e222.4 | . . . . . . 7 ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) | |
| 11 | 6, 9, 10 | syl2im 40 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) → (𝜏 → 𝜂))) |
| 12 | 11 | pm2.43i 52 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → (𝜏 → 𝜂)) |
| 13 | 3, 12 | syl5com 31 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) → 𝜂)) |
| 14 | 13 | pm2.43i 52 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜂) |
| 15 | 14 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → 𝜂)) |
| 16 | 15 | dfvd2ir 44549 | 1 ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ( wvd2 44540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-vd2 44541 |
| This theorem is referenced by: e220 44600 e202 44602 e022 44604 e002 44606 e020 44608 e200 44610 e221 44612 e212 44614 e122 44616 e112 44617 e121 44619 e211 44620 e22 44634 suctrALT2VD 44798 en3lplem2VD 44806 19.21a3con13vVD 44814 tratrbVD 44823 |
| Copyright terms: Public domain | W3C validator |