Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e222 Structured version   Visualization version   GIF version

Theorem e222 42256
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e222.1 (   𝜑   ,   𝜓   ▶   𝜒   )
e222.2 (   𝜑   ,   𝜓   ▶   𝜃   )
e222.3 (   𝜑   ,   𝜓   ▶   𝜏   )
e222.4 (𝜒 → (𝜃 → (𝜏𝜂)))
Assertion
Ref Expression
e222 (   𝜑   ,   𝜓   ▶   𝜂   )

Proof of Theorem e222
StepHypRef Expression
1 e222.3 . . . . . . 7 (   𝜑   ,   𝜓   ▶   𝜏   )
21dfvd2i 42205 . . . . . 6 (𝜑 → (𝜓𝜏))
32imp 407 . . . . 5 ((𝜑𝜓) → 𝜏)
4 e222.1 . . . . . . . . 9 (   𝜑   ,   𝜓   ▶   𝜒   )
54dfvd2i 42205 . . . . . . . 8 (𝜑 → (𝜓𝜒))
65imp 407 . . . . . . 7 ((𝜑𝜓) → 𝜒)
7 e222.2 . . . . . . . . 9 (   𝜑   ,   𝜓   ▶   𝜃   )
87dfvd2i 42205 . . . . . . . 8 (𝜑 → (𝜓𝜃))
98imp 407 . . . . . . 7 ((𝜑𝜓) → 𝜃)
10 e222.4 . . . . . . 7 (𝜒 → (𝜃 → (𝜏𝜂)))
116, 9, 10syl2im 40 . . . . . 6 ((𝜑𝜓) → ((𝜑𝜓) → (𝜏𝜂)))
1211pm2.43i 52 . . . . 5 ((𝜑𝜓) → (𝜏𝜂))
133, 12syl5com 31 . . . 4 ((𝜑𝜓) → ((𝜑𝜓) → 𝜂))
1413pm2.43i 52 . . 3 ((𝜑𝜓) → 𝜂)
1514ex 413 . 2 (𝜑 → (𝜓𝜂))
1615dfvd2ir 42206 1 (   𝜑   ,   𝜓   ▶   𝜂   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  (   wvd2 42197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-vd2 42198
This theorem is referenced by:  e220  42257  e202  42259  e022  42261  e002  42263  e020  42265  e200  42267  e221  42269  e212  42271  e122  42273  e112  42274  e121  42276  e211  42277  e22  42291  suctrALT2VD  42456  en3lplem2VD  42464  19.21a3con13vVD  42472  tratrbVD  42481
  Copyright terms: Public domain W3C validator