![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > e222 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e222.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
e222.2 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) |
e222.3 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) |
e222.4 | ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) |
Ref | Expression |
---|---|
e222 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e222.3 | . . . . . . 7 ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) | |
2 | 1 | dfvd2i 43346 | . . . . . 6 ⊢ (𝜑 → (𝜓 → 𝜏)) |
3 | 2 | imp 408 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) |
4 | e222.1 | . . . . . . . . 9 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
5 | 4 | dfvd2i 43346 | . . . . . . . 8 ⊢ (𝜑 → (𝜓 → 𝜒)) |
6 | 5 | imp 408 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
7 | e222.2 | . . . . . . . . 9 ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) | |
8 | 7 | dfvd2i 43346 | . . . . . . . 8 ⊢ (𝜑 → (𝜓 → 𝜃)) |
9 | 8 | imp 408 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
10 | e222.4 | . . . . . . 7 ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) | |
11 | 6, 9, 10 | syl2im 40 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) → (𝜏 → 𝜂))) |
12 | 11 | pm2.43i 52 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → (𝜏 → 𝜂)) |
13 | 3, 12 | syl5com 31 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) → 𝜂)) |
14 | 13 | pm2.43i 52 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜂) |
15 | 14 | ex 414 | . 2 ⊢ (𝜑 → (𝜓 → 𝜂)) |
16 | 15 | dfvd2ir 43347 | 1 ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ( wvd2 43338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-vd2 43339 |
This theorem is referenced by: e220 43398 e202 43400 e022 43402 e002 43404 e020 43406 e200 43408 e221 43410 e212 43412 e122 43414 e112 43415 e121 43417 e211 43418 e22 43432 suctrALT2VD 43597 en3lplem2VD 43605 19.21a3con13vVD 43613 tratrbVD 43622 |
Copyright terms: Public domain | W3C validator |