![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > e222 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e222.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
e222.2 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) |
e222.3 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) |
e222.4 | ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) |
Ref | Expression |
---|---|
e222 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e222.3 | . . . . . . 7 ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) | |
2 | 1 | dfvd2i 44556 | . . . . . 6 ⊢ (𝜑 → (𝜓 → 𝜏)) |
3 | 2 | imp 406 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) |
4 | e222.1 | . . . . . . . . 9 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
5 | 4 | dfvd2i 44556 | . . . . . . . 8 ⊢ (𝜑 → (𝜓 → 𝜒)) |
6 | 5 | imp 406 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
7 | e222.2 | . . . . . . . . 9 ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) | |
8 | 7 | dfvd2i 44556 | . . . . . . . 8 ⊢ (𝜑 → (𝜓 → 𝜃)) |
9 | 8 | imp 406 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
10 | e222.4 | . . . . . . 7 ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) | |
11 | 6, 9, 10 | syl2im 40 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) → (𝜏 → 𝜂))) |
12 | 11 | pm2.43i 52 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → (𝜏 → 𝜂)) |
13 | 3, 12 | syl5com 31 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) → 𝜂)) |
14 | 13 | pm2.43i 52 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜂) |
15 | 14 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → 𝜂)) |
16 | 15 | dfvd2ir 44557 | 1 ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ( wvd2 44548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-vd2 44549 |
This theorem is referenced by: e220 44608 e202 44610 e022 44612 e002 44614 e020 44616 e200 44618 e221 44620 e212 44622 e122 44624 e112 44625 e121 44627 e211 44628 e22 44642 suctrALT2VD 44807 en3lplem2VD 44815 19.21a3con13vVD 44823 tratrbVD 44832 |
Copyright terms: Public domain | W3C validator |