Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > e1bir | Structured version Visualization version GIF version |
Description: Right biconditional form of e1a 42247. sylibr 233 is e1bir 42250 without virtual deductions. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e1bir.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
e1bir.2 | ⊢ (𝜒 ↔ 𝜓) |
Ref | Expression |
---|---|
e1bir | ⊢ ( 𝜑 ▶ 𝜒 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e1bir.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | e1bir.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 2 | biimpri 227 | . 2 ⊢ (𝜓 → 𝜒) |
4 | 1, 3 | e1a 42247 | 1 ⊢ ( 𝜑 ▶ 𝜒 ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ( wvd1 42189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-vd1 42190 |
This theorem is referenced by: en3lplem2VD 42464 |
Copyright terms: Public domain | W3C validator |