![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > e1a | Structured version Visualization version GIF version |
Description: A Virtual deduction elimination rule. syl 17 is e1a 44598 without virtual deductions. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e1a.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
e1a.2 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
e1a | ⊢ ( 𝜑 ▶ 𝜒 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e1a.1 | . . . 4 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | 1 | in1 44542 | . . 3 ⊢ (𝜑 → 𝜓) |
3 | e1a.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → 𝜒) |
5 | 4 | dfvd1ir 44544 | 1 ⊢ ( 𝜑 ▶ 𝜒 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 44540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-vd1 44541 |
This theorem is referenced by: e1bi 44600 e1bir 44601 snelpwrVD 44802 unipwrVD 44803 sstrALT2VD 44805 elex2VD 44809 elex22VD 44810 eqsbc2VD 44811 zfregs2VD 44812 tpid3gVD 44813 en3lplem1VD 44814 en3lpVD 44816 3ornot23VD 44818 3orbi123VD 44821 sbc3orgVD 44822 exbirVD 44824 3impexpVD 44827 3impexpbicomVD 44828 tratrbVD 44832 al2imVD 44833 syl5impVD 44834 ssralv2VD 44837 ordelordALTVD 44838 sbcim2gVD 44846 trsbcVD 44848 truniALTVD 44849 trintALTVD 44851 undif3VD 44853 sbcssgVD 44854 csbingVD 44855 onfrALTlem3VD 44858 simplbi2comtVD 44859 onfrALTlem2VD 44860 onfrALTVD 44862 csbeq2gVD 44863 csbsngVD 44864 csbxpgVD 44865 csbresgVD 44866 csbrngVD 44867 csbima12gALTVD 44868 csbunigVD 44869 csbfv12gALTVD 44870 con5VD 44871 relopabVD 44872 19.41rgVD 44873 2pm13.193VD 44874 hbimpgVD 44875 hbalgVD 44876 hbexgVD 44877 ax6e2eqVD 44878 ax6e2ndVD 44879 ax6e2ndeqVD 44880 2sb5ndVD 44881 2uasbanhVD 44882 e2ebindVD 44883 sb5ALTVD 44884 vk15.4jVD 44885 notnotrALTVD 44886 con3ALTVD 44887 |
Copyright terms: Public domain | W3C validator |