Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > e1a | Structured version Visualization version GIF version |
Description: A Virtual deduction elimination rule. syl 17 is e1a 42247 without virtual deductions. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e1a.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
e1a.2 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
e1a | ⊢ ( 𝜑 ▶ 𝜒 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e1a.1 | . . . 4 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | 1 | in1 42191 | . . 3 ⊢ (𝜑 → 𝜓) |
3 | e1a.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → 𝜒) |
5 | 4 | dfvd1ir 42193 | 1 ⊢ ( 𝜑 ▶ 𝜒 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 42189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-vd1 42190 |
This theorem is referenced by: e1bi 42249 e1bir 42250 snelpwrVD 42451 unipwrVD 42452 sstrALT2VD 42454 elex2VD 42458 elex22VD 42459 eqsbc2VD 42460 zfregs2VD 42461 tpid3gVD 42462 en3lplem1VD 42463 en3lpVD 42465 3ornot23VD 42467 3orbi123VD 42470 sbc3orgVD 42471 exbirVD 42473 3impexpVD 42476 3impexpbicomVD 42477 tratrbVD 42481 al2imVD 42482 syl5impVD 42483 ssralv2VD 42486 ordelordALTVD 42487 sbcim2gVD 42495 trsbcVD 42497 truniALTVD 42498 trintALTVD 42500 undif3VD 42502 sbcssgVD 42503 csbingVD 42504 onfrALTlem3VD 42507 simplbi2comtVD 42508 onfrALTlem2VD 42509 onfrALTVD 42511 csbeq2gVD 42512 csbsngVD 42513 csbxpgVD 42514 csbresgVD 42515 csbrngVD 42516 csbima12gALTVD 42517 csbunigVD 42518 csbfv12gALTVD 42519 con5VD 42520 relopabVD 42521 19.41rgVD 42522 2pm13.193VD 42523 hbimpgVD 42524 hbalgVD 42525 hbexgVD 42526 ax6e2eqVD 42527 ax6e2ndVD 42528 ax6e2ndeqVD 42529 2sb5ndVD 42530 2uasbanhVD 42531 e2ebindVD 42532 sb5ALTVD 42533 vk15.4jVD 42534 notnotrALTVD 42535 con3ALTVD 42536 |
Copyright terms: Public domain | W3C validator |