![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > e1a | Structured version Visualization version GIF version |
Description: A Virtual deduction elimination rule. syl 17 is e1a 43373 without virtual deductions. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e1a.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
e1a.2 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
e1a | ⊢ ( 𝜑 ▶ 𝜒 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e1a.1 | . . . 4 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | 1 | in1 43317 | . . 3 ⊢ (𝜑 → 𝜓) |
3 | e1a.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → 𝜒) |
5 | 4 | dfvd1ir 43319 | 1 ⊢ ( 𝜑 ▶ 𝜒 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 43315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-vd1 43316 |
This theorem is referenced by: e1bi 43375 e1bir 43376 snelpwrVD 43577 unipwrVD 43578 sstrALT2VD 43580 elex2VD 43584 elex22VD 43585 eqsbc2VD 43586 zfregs2VD 43587 tpid3gVD 43588 en3lplem1VD 43589 en3lpVD 43591 3ornot23VD 43593 3orbi123VD 43596 sbc3orgVD 43597 exbirVD 43599 3impexpVD 43602 3impexpbicomVD 43603 tratrbVD 43607 al2imVD 43608 syl5impVD 43609 ssralv2VD 43612 ordelordALTVD 43613 sbcim2gVD 43621 trsbcVD 43623 truniALTVD 43624 trintALTVD 43626 undif3VD 43628 sbcssgVD 43629 csbingVD 43630 onfrALTlem3VD 43633 simplbi2comtVD 43634 onfrALTlem2VD 43635 onfrALTVD 43637 csbeq2gVD 43638 csbsngVD 43639 csbxpgVD 43640 csbresgVD 43641 csbrngVD 43642 csbima12gALTVD 43643 csbunigVD 43644 csbfv12gALTVD 43645 con5VD 43646 relopabVD 43647 19.41rgVD 43648 2pm13.193VD 43649 hbimpgVD 43650 hbalgVD 43651 hbexgVD 43652 ax6e2eqVD 43653 ax6e2ndVD 43654 ax6e2ndeqVD 43655 2sb5ndVD 43656 2uasbanhVD 43657 e2ebindVD 43658 sb5ALTVD 43659 vk15.4jVD 43660 notnotrALTVD 43661 con3ALTVD 43662 |
Copyright terms: Public domain | W3C validator |