| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e1a | Structured version Visualization version GIF version | ||
| Description: A Virtual deduction elimination rule. syl 17 is e1a 44619 without virtual deductions. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e1a.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| e1a.2 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| e1a | ⊢ ( 𝜑 ▶ 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e1a.1 | . . . 4 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | 1 | in1 44563 | . . 3 ⊢ (𝜑 → 𝜓) |
| 3 | e1a.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → 𝜒) |
| 5 | 4 | dfvd1ir 44565 | 1 ⊢ ( 𝜑 ▶ 𝜒 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-vd1 44562 |
| This theorem is referenced by: e1bi 44621 e1bir 44622 snelpwrVD 44822 unipwrVD 44823 sstrALT2VD 44825 elex2VD 44829 elex22VD 44830 eqsbc2VD 44831 zfregs2VD 44832 tpid3gVD 44833 en3lplem1VD 44834 en3lpVD 44836 3ornot23VD 44838 3orbi123VD 44841 sbc3orgVD 44842 exbirVD 44844 3impexpVD 44847 3impexpbicomVD 44848 tratrbVD 44852 al2imVD 44853 syl5impVD 44854 ssralv2VD 44857 ordelordALTVD 44858 sbcim2gVD 44866 trsbcVD 44868 truniALTVD 44869 trintALTVD 44871 undif3VD 44873 sbcssgVD 44874 csbingVD 44875 onfrALTlem3VD 44878 simplbi2comtVD 44879 onfrALTlem2VD 44880 onfrALTVD 44882 csbeq2gVD 44883 csbsngVD 44884 csbxpgVD 44885 csbresgVD 44886 csbrngVD 44887 csbima12gALTVD 44888 csbunigVD 44889 csbfv12gALTVD 44890 con5VD 44891 relopabVD 44892 19.41rgVD 44893 2pm13.193VD 44894 hbimpgVD 44895 hbalgVD 44896 hbexgVD 44897 ax6e2eqVD 44898 ax6e2ndVD 44899 ax6e2ndeqVD 44900 2sb5ndVD 44901 2uasbanhVD 44902 e2ebindVD 44903 sb5ALTVD 44904 vk15.4jVD 44905 notnotrALTVD 44906 con3ALTVD 44907 |
| Copyright terms: Public domain | W3C validator |