| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e1a | Structured version Visualization version GIF version | ||
| Description: A Virtual deduction elimination rule. syl 17 is e1a 44617 without virtual deductions. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e1a.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| e1a.2 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| e1a | ⊢ ( 𝜑 ▶ 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e1a.1 | . . . 4 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | 1 | in1 44561 | . . 3 ⊢ (𝜑 → 𝜓) |
| 3 | e1a.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → 𝜒) |
| 5 | 4 | dfvd1ir 44563 | 1 ⊢ ( 𝜑 ▶ 𝜒 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-vd1 44560 |
| This theorem is referenced by: e1bi 44619 e1bir 44620 snelpwrVD 44820 unipwrVD 44821 sstrALT2VD 44823 elex2VD 44827 elex22VD 44828 eqsbc2VD 44829 zfregs2VD 44830 tpid3gVD 44831 en3lplem1VD 44832 en3lpVD 44834 3ornot23VD 44836 3orbi123VD 44839 sbc3orgVD 44840 exbirVD 44842 3impexpVD 44845 3impexpbicomVD 44846 tratrbVD 44850 al2imVD 44851 syl5impVD 44852 ssralv2VD 44855 ordelordALTVD 44856 sbcim2gVD 44864 trsbcVD 44866 truniALTVD 44867 trintALTVD 44869 undif3VD 44871 sbcssgVD 44872 csbingVD 44873 onfrALTlem3VD 44876 simplbi2comtVD 44877 onfrALTlem2VD 44878 onfrALTVD 44880 csbeq2gVD 44881 csbsngVD 44882 csbxpgVD 44883 csbresgVD 44884 csbrngVD 44885 csbima12gALTVD 44886 csbunigVD 44887 csbfv12gALTVD 44888 con5VD 44889 relopabVD 44890 19.41rgVD 44891 2pm13.193VD 44892 hbimpgVD 44893 hbalgVD 44894 hbexgVD 44895 ax6e2eqVD 44896 ax6e2ndVD 44897 ax6e2ndeqVD 44898 2sb5ndVD 44899 2uasbanhVD 44900 e2ebindVD 44901 sb5ALTVD 44902 vk15.4jVD 44903 notnotrALTVD 44904 con3ALTVD 44905 |
| Copyright terms: Public domain | W3C validator |