| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e1a | Structured version Visualization version GIF version | ||
| Description: A Virtual deduction elimination rule. syl 17 is e1a 44604 without virtual deductions. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e1a.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| e1a.2 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| e1a | ⊢ ( 𝜑 ▶ 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e1a.1 | . . . 4 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | 1 | in1 44548 | . . 3 ⊢ (𝜑 → 𝜓) |
| 3 | e1a.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → 𝜒) |
| 5 | 4 | dfvd1ir 44550 | 1 ⊢ ( 𝜑 ▶ 𝜒 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44546 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-vd1 44547 |
| This theorem is referenced by: e1bi 44606 e1bir 44607 snelpwrVD 44807 unipwrVD 44808 sstrALT2VD 44810 elex2VD 44814 elex22VD 44815 eqsbc2VD 44816 zfregs2VD 44817 tpid3gVD 44818 en3lplem1VD 44819 en3lpVD 44821 3ornot23VD 44823 3orbi123VD 44826 sbc3orgVD 44827 exbirVD 44829 3impexpVD 44832 3impexpbicomVD 44833 tratrbVD 44837 al2imVD 44838 syl5impVD 44839 ssralv2VD 44842 ordelordALTVD 44843 sbcim2gVD 44851 trsbcVD 44853 truniALTVD 44854 trintALTVD 44856 undif3VD 44858 sbcssgVD 44859 csbingVD 44860 onfrALTlem3VD 44863 simplbi2comtVD 44864 onfrALTlem2VD 44865 onfrALTVD 44867 csbeq2gVD 44868 csbsngVD 44869 csbxpgVD 44870 csbresgVD 44871 csbrngVD 44872 csbima12gALTVD 44873 csbunigVD 44874 csbfv12gALTVD 44875 con5VD 44876 relopabVD 44877 19.41rgVD 44878 2pm13.193VD 44879 hbimpgVD 44880 hbalgVD 44881 hbexgVD 44882 ax6e2eqVD 44883 ax6e2ndVD 44884 ax6e2ndeqVD 44885 2sb5ndVD 44886 2uasbanhVD 44887 e2ebindVD 44888 sb5ALTVD 44889 vk15.4jVD 44890 notnotrALTVD 44891 con3ALTVD 44892 |
| Copyright terms: Public domain | W3C validator |