![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > e1a | Structured version Visualization version GIF version |
Description: A Virtual deduction elimination rule. syl 17 is e1a 43902 without virtual deductions. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e1a.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
e1a.2 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
e1a | ⊢ ( 𝜑 ▶ 𝜒 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e1a.1 | . . . 4 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | 1 | in1 43846 | . . 3 ⊢ (𝜑 → 𝜓) |
3 | e1a.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → 𝜒) |
5 | 4 | dfvd1ir 43848 | 1 ⊢ ( 𝜑 ▶ 𝜒 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 43844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-vd1 43845 |
This theorem is referenced by: e1bi 43904 e1bir 43905 snelpwrVD 44106 unipwrVD 44107 sstrALT2VD 44109 elex2VD 44113 elex22VD 44114 eqsbc2VD 44115 zfregs2VD 44116 tpid3gVD 44117 en3lplem1VD 44118 en3lpVD 44120 3ornot23VD 44122 3orbi123VD 44125 sbc3orgVD 44126 exbirVD 44128 3impexpVD 44131 3impexpbicomVD 44132 tratrbVD 44136 al2imVD 44137 syl5impVD 44138 ssralv2VD 44141 ordelordALTVD 44142 sbcim2gVD 44150 trsbcVD 44152 truniALTVD 44153 trintALTVD 44155 undif3VD 44157 sbcssgVD 44158 csbingVD 44159 onfrALTlem3VD 44162 simplbi2comtVD 44163 onfrALTlem2VD 44164 onfrALTVD 44166 csbeq2gVD 44167 csbsngVD 44168 csbxpgVD 44169 csbresgVD 44170 csbrngVD 44171 csbima12gALTVD 44172 csbunigVD 44173 csbfv12gALTVD 44174 con5VD 44175 relopabVD 44176 19.41rgVD 44177 2pm13.193VD 44178 hbimpgVD 44179 hbalgVD 44180 hbexgVD 44181 ax6e2eqVD 44182 ax6e2ndVD 44183 ax6e2ndeqVD 44184 2sb5ndVD 44185 2uasbanhVD 44186 e2ebindVD 44187 sb5ALTVD 44188 vk15.4jVD 44189 notnotrALTVD 44190 con3ALTVD 44191 |
Copyright terms: Public domain | W3C validator |