| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e1a | Structured version Visualization version GIF version | ||
| Description: A Virtual deduction elimination rule. syl 17 is e1a 44666 without virtual deductions. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e1a.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| e1a.2 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| e1a | ⊢ ( 𝜑 ▶ 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e1a.1 | . . . 4 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | 1 | in1 44610 | . . 3 ⊢ (𝜑 → 𝜓) |
| 3 | e1a.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → 𝜒) |
| 5 | 4 | dfvd1ir 44612 | 1 ⊢ ( 𝜑 ▶ 𝜒 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-vd1 44609 |
| This theorem is referenced by: e1bi 44668 e1bir 44669 snelpwrVD 44869 unipwrVD 44870 sstrALT2VD 44872 elex2VD 44876 elex22VD 44877 eqsbc2VD 44878 zfregs2VD 44879 tpid3gVD 44880 en3lplem1VD 44881 en3lpVD 44883 3ornot23VD 44885 3orbi123VD 44888 sbc3orgVD 44889 exbirVD 44891 3impexpVD 44894 3impexpbicomVD 44895 tratrbVD 44899 al2imVD 44900 syl5impVD 44901 ssralv2VD 44904 ordelordALTVD 44905 sbcim2gVD 44913 trsbcVD 44915 truniALTVD 44916 trintALTVD 44918 undif3VD 44920 sbcssgVD 44921 csbingVD 44922 onfrALTlem3VD 44925 simplbi2comtVD 44926 onfrALTlem2VD 44927 onfrALTVD 44929 csbeq2gVD 44930 csbsngVD 44931 csbxpgVD 44932 csbresgVD 44933 csbrngVD 44934 csbima12gALTVD 44935 csbunigVD 44936 csbfv12gALTVD 44937 con5VD 44938 relopabVD 44939 19.41rgVD 44940 2pm13.193VD 44941 hbimpgVD 44942 hbalgVD 44943 hbexgVD 44944 ax6e2eqVD 44945 ax6e2ndVD 44946 ax6e2ndeqVD 44947 2sb5ndVD 44948 2uasbanhVD 44949 e2ebindVD 44950 sb5ALTVD 44951 vk15.4jVD 44952 notnotrALTVD 44953 con3ALTVD 44954 |
| Copyright terms: Public domain | W3C validator |