Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > e1a | Structured version Visualization version GIF version |
Description: A Virtual deduction elimination rule. syl 17 is e1a 42136 without virtual deductions. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e1a.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
e1a.2 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
e1a | ⊢ ( 𝜑 ▶ 𝜒 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e1a.1 | . . . 4 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | 1 | in1 42080 | . . 3 ⊢ (𝜑 → 𝜓) |
3 | e1a.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → 𝜒) |
5 | 4 | dfvd1ir 42082 | 1 ⊢ ( 𝜑 ▶ 𝜒 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 42078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-vd1 42079 |
This theorem is referenced by: e1bi 42138 e1bir 42139 snelpwrVD 42340 unipwrVD 42341 sstrALT2VD 42343 elex2VD 42347 elex22VD 42348 eqsbc2VD 42349 zfregs2VD 42350 tpid3gVD 42351 en3lplem1VD 42352 en3lpVD 42354 3ornot23VD 42356 3orbi123VD 42359 sbc3orgVD 42360 exbirVD 42362 3impexpVD 42365 3impexpbicomVD 42366 tratrbVD 42370 al2imVD 42371 syl5impVD 42372 ssralv2VD 42375 ordelordALTVD 42376 sbcim2gVD 42384 trsbcVD 42386 truniALTVD 42387 trintALTVD 42389 undif3VD 42391 sbcssgVD 42392 csbingVD 42393 onfrALTlem3VD 42396 simplbi2comtVD 42397 onfrALTlem2VD 42398 onfrALTVD 42400 csbeq2gVD 42401 csbsngVD 42402 csbxpgVD 42403 csbresgVD 42404 csbrngVD 42405 csbima12gALTVD 42406 csbunigVD 42407 csbfv12gALTVD 42408 con5VD 42409 relopabVD 42410 19.41rgVD 42411 2pm13.193VD 42412 hbimpgVD 42413 hbalgVD 42414 hbexgVD 42415 ax6e2eqVD 42416 ax6e2ndVD 42417 ax6e2ndeqVD 42418 2sb5ndVD 42419 2uasbanhVD 42420 e2ebindVD 42421 sb5ALTVD 42422 vk15.4jVD 42423 notnotrALTVD 42424 con3ALTVD 42425 |
Copyright terms: Public domain | W3C validator |