![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > e1a | Structured version Visualization version GIF version |
Description: A Virtual deduction elimination rule. syl 17 is e1a 40380 without virtual deductions. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e1a.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
e1a.2 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
e1a | ⊢ ( 𝜑 ▶ 𝜒 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e1a.1 | . . . 4 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | 1 | in1 40324 | . . 3 ⊢ (𝜑 → 𝜓) |
3 | e1a.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → 𝜒) |
5 | 4 | dfvd1ir 40326 | 1 ⊢ ( 𝜑 ▶ 𝜒 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 40322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-vd1 40323 |
This theorem is referenced by: e1bi 40382 e1bir 40383 snelpwrVD 40584 unipwrVD 40585 sstrALT2VD 40587 elex2VD 40591 elex22VD 40592 eqsbc3rVD 40593 zfregs2VD 40594 tpid3gVD 40595 en3lplem1VD 40596 en3lpVD 40598 3ornot23VD 40600 3orbi123VD 40603 sbc3orgVD 40604 exbirVD 40606 3impexpVD 40609 3impexpbicomVD 40610 tratrbVD 40614 al2imVD 40615 syl5impVD 40616 ssralv2VD 40619 ordelordALTVD 40620 sbcim2gVD 40628 trsbcVD 40630 truniALTVD 40631 trintALTVD 40633 undif3VD 40635 sbcssgVD 40636 csbingVD 40637 onfrALTlem3VD 40640 simplbi2comtVD 40641 onfrALTlem2VD 40642 onfrALTVD 40644 csbeq2gVD 40645 csbsngVD 40646 csbxpgVD 40647 csbresgVD 40648 csbrngVD 40649 csbima12gALTVD 40650 csbunigVD 40651 csbfv12gALTVD 40652 con5VD 40653 relopabVD 40654 19.41rgVD 40655 2pm13.193VD 40656 hbimpgVD 40657 hbalgVD 40658 hbexgVD 40659 ax6e2eqVD 40660 ax6e2ndVD 40661 ax6e2ndeqVD 40662 2sb5ndVD 40663 2uasbanhVD 40664 e2ebindVD 40665 sb5ALTVD 40666 vk15.4jVD 40667 notnotrALTVD 40668 con3ALTVD 40669 |
Copyright terms: Public domain | W3C validator |