| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e1a | Structured version Visualization version GIF version | ||
| Description: A Virtual deduction elimination rule. syl 17 is e1a 44747 without virtual deductions. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e1a.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| e1a.2 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| e1a | ⊢ ( 𝜑 ▶ 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e1a.1 | . . . 4 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | 1 | in1 44691 | . . 3 ⊢ (𝜑 → 𝜓) |
| 3 | e1a.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → 𝜒) |
| 5 | 4 | dfvd1ir 44693 | 1 ⊢ ( 𝜑 ▶ 𝜒 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44689 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-vd1 44690 |
| This theorem is referenced by: e1bi 44749 e1bir 44750 snelpwrVD 44950 unipwrVD 44951 sstrALT2VD 44953 elex2VD 44957 elex22VD 44958 eqsbc2VD 44959 zfregs2VD 44960 tpid3gVD 44961 en3lplem1VD 44962 en3lpVD 44964 3ornot23VD 44966 3orbi123VD 44969 sbc3orgVD 44970 exbirVD 44972 3impexpVD 44975 3impexpbicomVD 44976 tratrbVD 44980 al2imVD 44981 syl5impVD 44982 ssralv2VD 44985 ordelordALTVD 44986 sbcim2gVD 44994 trsbcVD 44996 truniALTVD 44997 trintALTVD 44999 undif3VD 45001 sbcssgVD 45002 csbingVD 45003 onfrALTlem3VD 45006 simplbi2comtVD 45007 onfrALTlem2VD 45008 onfrALTVD 45010 csbeq2gVD 45011 csbsngVD 45012 csbxpgVD 45013 csbresgVD 45014 csbrngVD 45015 csbima12gALTVD 45016 csbunigVD 45017 csbfv12gALTVD 45018 con5VD 45019 relopabVD 45020 19.41rgVD 45021 2pm13.193VD 45022 hbimpgVD 45023 hbalgVD 45024 hbexgVD 45025 ax6e2eqVD 45026 ax6e2ndVD 45027 ax6e2ndeqVD 45028 2sb5ndVD 45029 2uasbanhVD 45030 e2ebindVD 45031 sb5ALTVD 45032 vk15.4jVD 45033 notnotrALTVD 45034 con3ALTVD 45035 |
| Copyright terms: Public domain | W3C validator |