Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e2 Structured version   Visualization version   GIF version

Theorem e2 44594
Description: A virtual deduction elimination rule. syl6 35 is e2 44594 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e2.1 (   𝜑   ,   𝜓   ▶   𝜒   )
e2.2 (𝜒𝜃)
Assertion
Ref Expression
e2 (   𝜑   ,   𝜓   ▶   𝜃   )

Proof of Theorem e2
StepHypRef Expression
1 e2.1 . . . 4 (   𝜑   ,   𝜓   ▶   𝜒   )
21dfvd2i 44548 . . 3 (𝜑 → (𝜓𝜒))
3 e2.2 . . 3 (𝜒𝜃)
42, 3syl6 35 . 2 (𝜑 → (𝜓𝜃))
54dfvd2ir 44549 1 (   𝜑   ,   𝜓   ▶   𝜃   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd2 44540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-vd2 44541
This theorem is referenced by:  e2bi  44595  e2bir  44596  sspwtr  44783  pwtrVD  44786  pwtrrVD  44787  suctrALT2VD  44798  tpid3gVD  44804  en3lplem1VD  44805  3ornot23VD  44809  orbi1rVD  44810  19.21a3con13vVD  44814  tratrbVD  44823  syl5impVD  44825  ssralv2VD  44828  truniALTVD  44840  trintALTVD  44842  onfrALTlem3VD  44849  onfrALTlem2VD  44851  onfrALTlem1VD  44852  relopabVD  44863  19.41rgVD  44864  hbimpgVD  44866  ax6e2eqVD  44869  ax6e2ndeqVD  44871  sb5ALTVD  44875  vk15.4jVD  44876  con3ALTVD  44878
  Copyright terms: Public domain W3C validator