![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > e2 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule. syl6 35 is e2 44602 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e2.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
e2.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
e2 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e2.1 | . . . 4 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
2 | 1 | dfvd2i 44556 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | e2.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
4 | 2, 3 | syl6 35 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
5 | 4 | dfvd2ir 44557 | 1 ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd2 44548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-vd2 44549 |
This theorem is referenced by: e2bi 44603 e2bir 44604 sspwtr 44792 pwtrVD 44795 pwtrrVD 44796 suctrALT2VD 44807 tpid3gVD 44813 en3lplem1VD 44814 3ornot23VD 44818 orbi1rVD 44819 19.21a3con13vVD 44823 tratrbVD 44832 syl5impVD 44834 ssralv2VD 44837 truniALTVD 44849 trintALTVD 44851 onfrALTlem3VD 44858 onfrALTlem2VD 44860 onfrALTlem1VD 44861 relopabVD 44872 19.41rgVD 44873 hbimpgVD 44875 ax6e2eqVD 44878 ax6e2ndeqVD 44880 sb5ALTVD 44884 vk15.4jVD 44885 con3ALTVD 44887 |
Copyright terms: Public domain | W3C validator |