| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e2 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule. syl6 35 is e2 44621 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e2.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
| e2.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| e2 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e2.1 | . . . 4 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
| 2 | 1 | dfvd2i 44575 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | e2.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 4 | 2, 3 | syl6 35 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 5 | 4 | dfvd2ir 44576 | 1 ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd2 44567 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-vd2 44568 |
| This theorem is referenced by: e2bi 44622 e2bir 44623 sspwtr 44810 pwtrVD 44813 pwtrrVD 44814 suctrALT2VD 44825 tpid3gVD 44831 en3lplem1VD 44832 3ornot23VD 44836 orbi1rVD 44837 19.21a3con13vVD 44841 tratrbVD 44850 syl5impVD 44852 ssralv2VD 44855 truniALTVD 44867 trintALTVD 44869 onfrALTlem3VD 44876 onfrALTlem2VD 44878 onfrALTlem1VD 44879 relopabVD 44890 19.41rgVD 44891 hbimpgVD 44893 ax6e2eqVD 44896 ax6e2ndeqVD 44898 sb5ALTVD 44902 vk15.4jVD 44903 con3ALTVD 44905 |
| Copyright terms: Public domain | W3C validator |