| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e2 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule. syl6 35 is e2 44664 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e2.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
| e2.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| e2 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e2.1 | . . . 4 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
| 2 | 1 | dfvd2i 44618 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | e2.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 4 | 2, 3 | syl6 35 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 5 | 4 | dfvd2ir 44619 | 1 ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd2 44610 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-vd2 44611 |
| This theorem is referenced by: e2bi 44665 e2bir 44666 sspwtr 44853 pwtrVD 44856 pwtrrVD 44857 suctrALT2VD 44868 tpid3gVD 44874 en3lplem1VD 44875 3ornot23VD 44879 orbi1rVD 44880 19.21a3con13vVD 44884 tratrbVD 44893 syl5impVD 44895 ssralv2VD 44898 truniALTVD 44910 trintALTVD 44912 onfrALTlem3VD 44919 onfrALTlem2VD 44921 onfrALTlem1VD 44922 relopabVD 44933 19.41rgVD 44934 hbimpgVD 44936 ax6e2eqVD 44939 ax6e2ndeqVD 44941 sb5ALTVD 44945 vk15.4jVD 44946 con3ALTVD 44948 |
| Copyright terms: Public domain | W3C validator |