Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e2 Structured version   Visualization version   GIF version

Theorem e2 44602
Description: A virtual deduction elimination rule. syl6 35 is e2 44602 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e2.1 (   𝜑   ,   𝜓   ▶   𝜒   )
e2.2 (𝜒𝜃)
Assertion
Ref Expression
e2 (   𝜑   ,   𝜓   ▶   𝜃   )

Proof of Theorem e2
StepHypRef Expression
1 e2.1 . . . 4 (   𝜑   ,   𝜓   ▶   𝜒   )
21dfvd2i 44556 . . 3 (𝜑 → (𝜓𝜒))
3 e2.2 . . 3 (𝜒𝜃)
42, 3syl6 35 . 2 (𝜑 → (𝜓𝜃))
54dfvd2ir 44557 1 (   𝜑   ,   𝜓   ▶   𝜃   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd2 44548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-vd2 44549
This theorem is referenced by:  e2bi  44603  e2bir  44604  sspwtr  44792  pwtrVD  44795  pwtrrVD  44796  suctrALT2VD  44807  tpid3gVD  44813  en3lplem1VD  44814  3ornot23VD  44818  orbi1rVD  44819  19.21a3con13vVD  44823  tratrbVD  44832  syl5impVD  44834  ssralv2VD  44837  truniALTVD  44849  trintALTVD  44851  onfrALTlem3VD  44858  onfrALTlem2VD  44860  onfrALTlem1VD  44861  relopabVD  44872  19.41rgVD  44873  hbimpgVD  44875  ax6e2eqVD  44878  ax6e2ndeqVD  44880  sb5ALTVD  44884  vk15.4jVD  44885  con3ALTVD  44887
  Copyright terms: Public domain W3C validator