| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e2 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule. syl6 35 is e2 44625 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e2.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
| e2.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| e2 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e2.1 | . . . 4 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
| 2 | 1 | dfvd2i 44579 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | e2.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 4 | 2, 3 | syl6 35 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 5 | 4 | dfvd2ir 44580 | 1 ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd2 44571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-vd2 44572 |
| This theorem is referenced by: e2bi 44626 e2bir 44627 sspwtr 44814 pwtrVD 44817 pwtrrVD 44818 suctrALT2VD 44829 tpid3gVD 44835 en3lplem1VD 44836 3ornot23VD 44840 orbi1rVD 44841 19.21a3con13vVD 44845 tratrbVD 44854 syl5impVD 44856 ssralv2VD 44859 truniALTVD 44871 trintALTVD 44873 onfrALTlem3VD 44880 onfrALTlem2VD 44882 onfrALTlem1VD 44883 relopabVD 44894 19.41rgVD 44895 hbimpgVD 44897 ax6e2eqVD 44900 ax6e2ndeqVD 44902 sb5ALTVD 44906 vk15.4jVD 44907 con3ALTVD 44909 |
| Copyright terms: Public domain | W3C validator |