Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e2 Structured version   Visualization version   GIF version

Theorem e2 44623
Description: A virtual deduction elimination rule. syl6 35 is e2 44623 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e2.1 (   𝜑   ,   𝜓   ▶   𝜒   )
e2.2 (𝜒𝜃)
Assertion
Ref Expression
e2 (   𝜑   ,   𝜓   ▶   𝜃   )

Proof of Theorem e2
StepHypRef Expression
1 e2.1 . . . 4 (   𝜑   ,   𝜓   ▶   𝜒   )
21dfvd2i 44577 . . 3 (𝜑 → (𝜓𝜒))
3 e2.2 . . 3 (𝜒𝜃)
42, 3syl6 35 . 2 (𝜑 → (𝜓𝜃))
54dfvd2ir 44578 1 (   𝜑   ,   𝜓   ▶   𝜃   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd2 44569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-vd2 44570
This theorem is referenced by:  e2bi  44624  e2bir  44625  sspwtr  44812  pwtrVD  44815  pwtrrVD  44816  suctrALT2VD  44827  tpid3gVD  44833  en3lplem1VD  44834  3ornot23VD  44838  orbi1rVD  44839  19.21a3con13vVD  44843  tratrbVD  44852  syl5impVD  44854  ssralv2VD  44857  truniALTVD  44869  trintALTVD  44871  onfrALTlem3VD  44878  onfrALTlem2VD  44880  onfrALTlem1VD  44881  relopabVD  44892  19.41rgVD  44893  hbimpgVD  44895  ax6e2eqVD  44898  ax6e2ndeqVD  44900  sb5ALTVD  44904  vk15.4jVD  44905  con3ALTVD  44907
  Copyright terms: Public domain W3C validator