| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e2 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule. syl6 35 is e2 44594 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e2.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
| e2.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| e2 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e2.1 | . . . 4 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
| 2 | 1 | dfvd2i 44548 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | e2.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 4 | 2, 3 | syl6 35 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 5 | 4 | dfvd2ir 44549 | 1 ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd2 44540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-vd2 44541 |
| This theorem is referenced by: e2bi 44595 e2bir 44596 sspwtr 44783 pwtrVD 44786 pwtrrVD 44787 suctrALT2VD 44798 tpid3gVD 44804 en3lplem1VD 44805 3ornot23VD 44809 orbi1rVD 44810 19.21a3con13vVD 44814 tratrbVD 44823 syl5impVD 44825 ssralv2VD 44828 truniALTVD 44840 trintALTVD 44842 onfrALTlem3VD 44849 onfrALTlem2VD 44851 onfrALTlem1VD 44852 relopabVD 44863 19.41rgVD 44864 hbimpgVD 44866 ax6e2eqVD 44869 ax6e2ndeqVD 44871 sb5ALTVD 44875 vk15.4jVD 44876 con3ALTVD 44878 |
| Copyright terms: Public domain | W3C validator |