Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e2 Structured version   Visualization version   GIF version

Theorem e2 44625
Description: A virtual deduction elimination rule. syl6 35 is e2 44625 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e2.1 (   𝜑   ,   𝜓   ▶   𝜒   )
e2.2 (𝜒𝜃)
Assertion
Ref Expression
e2 (   𝜑   ,   𝜓   ▶   𝜃   )

Proof of Theorem e2
StepHypRef Expression
1 e2.1 . . . 4 (   𝜑   ,   𝜓   ▶   𝜒   )
21dfvd2i 44579 . . 3 (𝜑 → (𝜓𝜒))
3 e2.2 . . 3 (𝜒𝜃)
42, 3syl6 35 . 2 (𝜑 → (𝜓𝜃))
54dfvd2ir 44580 1 (   𝜑   ,   𝜓   ▶   𝜃   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd2 44571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-vd2 44572
This theorem is referenced by:  e2bi  44626  e2bir  44627  sspwtr  44814  pwtrVD  44817  pwtrrVD  44818  suctrALT2VD  44829  tpid3gVD  44835  en3lplem1VD  44836  3ornot23VD  44840  orbi1rVD  44841  19.21a3con13vVD  44845  tratrbVD  44854  syl5impVD  44856  ssralv2VD  44859  truniALTVD  44871  trintALTVD  44873  onfrALTlem3VD  44880  onfrALTlem2VD  44882  onfrALTlem1VD  44883  relopabVD  44894  19.41rgVD  44895  hbimpgVD  44897  ax6e2eqVD  44900  ax6e2ndeqVD  44902  sb5ALTVD  44906  vk15.4jVD  44907  con3ALTVD  44909
  Copyright terms: Public domain W3C validator