| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e2 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule. syl6 35 is e2 44788 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e2.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
| e2.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| e2 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e2.1 | . . . 4 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
| 2 | 1 | dfvd2i 44742 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | e2.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 4 | 2, 3 | syl6 35 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 5 | 4 | dfvd2ir 44743 | 1 ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd2 44734 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-vd2 44735 |
| This theorem is referenced by: e2bi 44789 e2bir 44790 sspwtr 44977 pwtrVD 44980 pwtrrVD 44981 suctrALT2VD 44992 tpid3gVD 44998 en3lplem1VD 44999 3ornot23VD 45003 orbi1rVD 45004 19.21a3con13vVD 45008 tratrbVD 45017 syl5impVD 45019 ssralv2VD 45022 truniALTVD 45034 trintALTVD 45036 onfrALTlem3VD 45043 onfrALTlem2VD 45045 onfrALTlem1VD 45046 relopabVD 45057 19.41rgVD 45058 hbimpgVD 45060 ax6e2eqVD 45063 ax6e2ndeqVD 45065 sb5ALTVD 45069 vk15.4jVD 45070 con3ALTVD 45072 |
| Copyright terms: Public domain | W3C validator |