Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e2 Structured version   Visualization version   GIF version

Theorem e2 44621
Description: A virtual deduction elimination rule. syl6 35 is e2 44621 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e2.1 (   𝜑   ,   𝜓   ▶   𝜒   )
e2.2 (𝜒𝜃)
Assertion
Ref Expression
e2 (   𝜑   ,   𝜓   ▶   𝜃   )

Proof of Theorem e2
StepHypRef Expression
1 e2.1 . . . 4 (   𝜑   ,   𝜓   ▶   𝜒   )
21dfvd2i 44575 . . 3 (𝜑 → (𝜓𝜒))
3 e2.2 . . 3 (𝜒𝜃)
42, 3syl6 35 . 2 (𝜑 → (𝜓𝜃))
54dfvd2ir 44576 1 (   𝜑   ,   𝜓   ▶   𝜃   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd2 44567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-vd2 44568
This theorem is referenced by:  e2bi  44622  e2bir  44623  sspwtr  44810  pwtrVD  44813  pwtrrVD  44814  suctrALT2VD  44825  tpid3gVD  44831  en3lplem1VD  44832  3ornot23VD  44836  orbi1rVD  44837  19.21a3con13vVD  44841  tratrbVD  44850  syl5impVD  44852  ssralv2VD  44855  truniALTVD  44867  trintALTVD  44869  onfrALTlem3VD  44876  onfrALTlem2VD  44878  onfrALTlem1VD  44879  relopabVD  44890  19.41rgVD  44891  hbimpgVD  44893  ax6e2eqVD  44896  ax6e2ndeqVD  44898  sb5ALTVD  44902  vk15.4jVD  44903  con3ALTVD  44905
  Copyright terms: Public domain W3C validator