| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e2 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule. syl6 35 is e2 44623 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e2.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
| e2.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| e2 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e2.1 | . . . 4 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
| 2 | 1 | dfvd2i 44577 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | e2.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 4 | 2, 3 | syl6 35 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 5 | 4 | dfvd2ir 44578 | 1 ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd2 44569 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-vd2 44570 |
| This theorem is referenced by: e2bi 44624 e2bir 44625 sspwtr 44812 pwtrVD 44815 pwtrrVD 44816 suctrALT2VD 44827 tpid3gVD 44833 en3lplem1VD 44834 3ornot23VD 44838 orbi1rVD 44839 19.21a3con13vVD 44843 tratrbVD 44852 syl5impVD 44854 ssralv2VD 44857 truniALTVD 44869 trintALTVD 44871 onfrALTlem3VD 44878 onfrALTlem2VD 44880 onfrALTlem1VD 44881 relopabVD 44892 19.41rgVD 44893 hbimpgVD 44895 ax6e2eqVD 44898 ax6e2ndeqVD 44900 sb5ALTVD 44904 vk15.4jVD 44905 con3ALTVD 44907 |
| Copyright terms: Public domain | W3C validator |