Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e210 Structured version   Visualization version   GIF version

Theorem e210 42279
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e210.1 (   𝜑   ,   𝜓   ▶   𝜒   )
e210.2 (   𝜑   ▶   𝜃   )
e210.3 𝜏
e210.4 (𝜒 → (𝜃 → (𝜏𝜂)))
Assertion
Ref Expression
e210 (   𝜑   ,   𝜓   ▶   𝜂   )

Proof of Theorem e210
StepHypRef Expression
1 e210.1 . 2 (   𝜑   ,   𝜓   ▶   𝜒   )
2 e210.2 . 2 (   𝜑   ▶   𝜃   )
3 e210.3 . . 3 𝜏
43vd01 42217 . 2 (   𝜑   ▶   𝜏   )
5 e210.4 . 2 (𝜒 → (𝜃 → (𝜏𝜂)))
61, 2, 4, 5e211 42277 1 (   𝜑   ,   𝜓   ▶   𝜂   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd1 42189  (   wvd2 42197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-vd1 42190  df-vd2 42198
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator