Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e211 Structured version   Visualization version   GIF version

Theorem e211 42230
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e211.1 (   𝜑   ,   𝜓   ▶   𝜒   )
e211.2 (   𝜑   ▶   𝜃   )
e211.3 (   𝜑   ▶   𝜏   )
e211.4 (𝜒 → (𝜃 → (𝜏𝜂)))
Assertion
Ref Expression
e211 (   𝜑   ,   𝜓   ▶   𝜂   )

Proof of Theorem e211
StepHypRef Expression
1 e211.1 . 2 (   𝜑   ,   𝜓   ▶   𝜒   )
2 e211.2 . . 3 (   𝜑   ▶   𝜃   )
32vd12 42173 . 2 (   𝜑   ,   𝜓   ▶   𝜃   )
4 e211.3 . . 3 (   𝜑   ▶   𝜏   )
54vd12 42173 . 2 (   𝜑   ,   𝜓   ▶   𝜏   )
6 e211.4 . 2 (𝜒 → (𝜃 → (𝜏𝜂)))
71, 3, 5, 6e222 42209 1 (   𝜑   ,   𝜓   ▶   𝜂   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd1 42142  (   wvd2 42150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-vd1 42143  df-vd2 42151
This theorem is referenced by:  e210  42232  e201  42234
  Copyright terms: Public domain W3C validator