Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > e23an | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e23an.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
e23an.2 | ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜏 ) |
e23an.3 | ⊢ ((𝜒 ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
e23an | ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜂 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e23an.1 | . 2 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
2 | e23an.2 | . 2 ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜏 ) | |
3 | e23an.3 | . . 3 ⊢ ((𝜒 ∧ 𝜏) → 𝜂) | |
4 | 3 | ex 413 | . 2 ⊢ (𝜒 → (𝜏 → 𝜂)) |
5 | 1, 2, 4 | e23 42375 | 1 ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜂 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ( wvd2 42197 ( wvd3 42207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-vd2 42198 df-vd3 42210 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |