Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e23an Structured version   Visualization version   GIF version

Theorem e23an 42265
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e23an.1 (   𝜑   ,   𝜓   ▶   𝜒   )
e23an.2 (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜏   )
e23an.3 ((𝜒𝜏) → 𝜂)
Assertion
Ref Expression
e23an (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜂   )

Proof of Theorem e23an
StepHypRef Expression
1 e23an.1 . 2 (   𝜑   ,   𝜓   ▶   𝜒   )
2 e23an.2 . 2 (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜏   )
3 e23an.3 . . 3 ((𝜒𝜏) → 𝜂)
43ex 412 . 2 (𝜒 → (𝜏𝜂))
51, 2, 4e23 42264 1 (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜂   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  (   wvd2 42086  (   wvd3 42096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-vd2 42087  df-vd3 42099
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator