| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e23 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule (see syl10 79). (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e23.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
| e23.2 | ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜏 ) |
| e23.3 | ⊢ (𝜒 → (𝜏 → 𝜂)) |
| Ref | Expression |
|---|---|
| e23 | ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e23.1 | . . 3 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
| 2 | 1 | vd23 44579 | . 2 ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜒 ) |
| 3 | e23.2 | . 2 ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜏 ) | |
| 4 | e23.3 | . 2 ⊢ (𝜒 → (𝜏 → 𝜂)) | |
| 5 | 2, 3, 4 | e33 44711 | 1 ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜂 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd2 44554 ( wvd3 44564 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-vd2 44555 df-vd3 44567 |
| This theorem is referenced by: e23an 44733 suctrALT2VD 44813 rspsbc2VD 44832 tratrbVD 44838 imbi12VD 44850 imbi13VD 44851 |
| Copyright terms: Public domain | W3C validator |