Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > e31 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e31.1 | ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) |
e31.2 | ⊢ ( 𝜑 ▶ 𝜏 ) |
e31.3 | ⊢ (𝜃 → (𝜏 → 𝜂)) |
Ref | Expression |
---|---|
e31 | ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e31.1 | . 2 ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) | |
2 | e31.2 | . . 3 ⊢ ( 𝜑 ▶ 𝜏 ) | |
3 | 2 | vd13 42110 | . 2 ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜏 ) |
4 | e31.3 | . 2 ⊢ (𝜃 → (𝜏 → 𝜂)) | |
5 | 1, 3, 4 | e33 42243 | 1 ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 42078 ( wvd3 42096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-vd1 42079 df-vd3 42099 |
This theorem is referenced by: e31an 42262 trintALTVD 42389 |
Copyright terms: Public domain | W3C validator |