Step | Hyp | Ref
| Expression |
1 | | idn2 42233 |
. . . . . . 7
⊢ ( ∀𝑥 ∈ 𝐴 Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) ▶ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) ) |
2 | | simpl 483 |
. . . . . . 7
⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) → 𝑧 ∈ 𝑦) |
3 | 1, 2 | e2 42251 |
. . . . . 6
⊢ ( ∀𝑥 ∈ 𝐴 Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) ▶ 𝑧 ∈ 𝑦 ) |
4 | | idn3 42235 |
. . . . . . . . . . 11
⊢ ( ∀𝑥 ∈ 𝐴 Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) , 𝑞 ∈ 𝐴 ▶ 𝑞 ∈ 𝐴 ) |
5 | | idn1 42194 |
. . . . . . . . . . . 12
⊢ ( ∀𝑥 ∈ 𝐴 Tr 𝑥 ▶ ∀𝑥 ∈ 𝐴 Tr 𝑥 ) |
6 | | rspsbc 3812 |
. . . . . . . . . . . 12
⊢ (𝑞 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 Tr 𝑥 → [𝑞 / 𝑥]Tr 𝑥)) |
7 | 4, 5, 6 | e31 42371 |
. . . . . . . . . . 11
⊢ ( ∀𝑥 ∈ 𝐴 Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) , 𝑞 ∈ 𝐴 ▶ [𝑞 / 𝑥]Tr 𝑥 ) |
8 | | trsbc 42160 |
. . . . . . . . . . . 12
⊢ (𝑞 ∈ 𝐴 → ([𝑞 / 𝑥]Tr 𝑥 ↔ Tr 𝑞)) |
9 | 8 | biimpd 228 |
. . . . . . . . . . 11
⊢ (𝑞 ∈ 𝐴 → ([𝑞 / 𝑥]Tr 𝑥 → Tr 𝑞)) |
10 | 4, 7, 9 | e33 42354 |
. . . . . . . . . 10
⊢ ( ∀𝑥 ∈ 𝐴 Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) , 𝑞 ∈ 𝐴 ▶ Tr 𝑞 ) |
11 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) → 𝑦 ∈ ∩ 𝐴) |
12 | 1, 11 | e2 42251 |
. . . . . . . . . . . . 13
⊢ ( ∀𝑥 ∈ 𝐴 Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) ▶ 𝑦 ∈ ∩ 𝐴 ) |
13 | | elintg 4887 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ∩ 𝐴
→ (𝑦 ∈ ∩ 𝐴
↔ ∀𝑞 ∈
𝐴 𝑦 ∈ 𝑞)) |
14 | 13 | ibi 266 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ∩ 𝐴
→ ∀𝑞 ∈
𝐴 𝑦 ∈ 𝑞) |
15 | 12, 14 | e2 42251 |
. . . . . . . . . . . 12
⊢ ( ∀𝑥 ∈ 𝐴 Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) ▶ ∀𝑞 ∈ 𝐴 𝑦 ∈ 𝑞 ) |
16 | | rsp 3131 |
. . . . . . . . . . . 12
⊢
(∀𝑞 ∈
𝐴 𝑦 ∈ 𝑞 → (𝑞 ∈ 𝐴 → 𝑦 ∈ 𝑞)) |
17 | 15, 16 | e2 42251 |
. . . . . . . . . . 11
⊢ ( ∀𝑥 ∈ 𝐴 Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) ▶ (𝑞 ∈ 𝐴 → 𝑦 ∈ 𝑞) ) |
18 | | pm2.27 42 |
. . . . . . . . . . 11
⊢ (𝑞 ∈ 𝐴 → ((𝑞 ∈ 𝐴 → 𝑦 ∈ 𝑞) → 𝑦 ∈ 𝑞)) |
19 | 4, 17, 18 | e32 42378 |
. . . . . . . . . 10
⊢ ( ∀𝑥 ∈ 𝐴 Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) , 𝑞 ∈ 𝐴 ▶ 𝑦 ∈ 𝑞 ) |
20 | | trel 5198 |
. . . . . . . . . . 11
⊢ (Tr 𝑞 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑞) → 𝑧 ∈ 𝑞)) |
21 | 20 | expd 416 |
. . . . . . . . . 10
⊢ (Tr 𝑞 → (𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑞 → 𝑧 ∈ 𝑞))) |
22 | 10, 3, 19, 21 | e323 42386 |
. . . . . . . . 9
⊢ ( ∀𝑥 ∈ 𝐴 Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) , 𝑞 ∈ 𝐴 ▶ 𝑧 ∈ 𝑞 ) |
23 | 22 | in3 42229 |
. . . . . . . 8
⊢ ( ∀𝑥 ∈ 𝐴 Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) ▶ (𝑞 ∈ 𝐴 → 𝑧 ∈ 𝑞) ) |
24 | 23 | gen21 42239 |
. . . . . . 7
⊢ ( ∀𝑥 ∈ 𝐴 Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) ▶ ∀𝑞(𝑞 ∈ 𝐴 → 𝑧 ∈ 𝑞) ) |
25 | | df-ral 3069 |
. . . . . . . 8
⊢
(∀𝑞 ∈
𝐴 𝑧 ∈ 𝑞 ↔ ∀𝑞(𝑞 ∈ 𝐴 → 𝑧 ∈ 𝑞)) |
26 | 25 | biimpri 227 |
. . . . . . 7
⊢
(∀𝑞(𝑞 ∈ 𝐴 → 𝑧 ∈ 𝑞) → ∀𝑞 ∈ 𝐴 𝑧 ∈ 𝑞) |
27 | 24, 26 | e2 42251 |
. . . . . 6
⊢ ( ∀𝑥 ∈ 𝐴 Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) ▶ ∀𝑞 ∈ 𝐴 𝑧 ∈ 𝑞 ) |
28 | | elintg 4887 |
. . . . . . 7
⊢ (𝑧 ∈ 𝑦 → (𝑧 ∈ ∩ 𝐴 ↔ ∀𝑞 ∈ 𝐴 𝑧 ∈ 𝑞)) |
29 | 28 | biimprd 247 |
. . . . . 6
⊢ (𝑧 ∈ 𝑦 → (∀𝑞 ∈ 𝐴 𝑧 ∈ 𝑞 → 𝑧 ∈ ∩ 𝐴)) |
30 | 3, 27, 29 | e22 42291 |
. . . . 5
⊢ ( ∀𝑥 ∈ 𝐴 Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) ▶ 𝑧 ∈ ∩ 𝐴 ) |
31 | 30 | in2 42225 |
. . . 4
⊢ ( ∀𝑥 ∈ 𝐴 Tr 𝑥 ▶ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) → 𝑧 ∈ ∩ 𝐴) ) |
32 | 31 | gen12 42238 |
. . 3
⊢ ( ∀𝑥 ∈ 𝐴 Tr 𝑥 ▶ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) → 𝑧 ∈ ∩ 𝐴) ) |
33 | | dftr2 5193 |
. . . 4
⊢ (Tr ∩ 𝐴
↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) → 𝑧 ∈ ∩ 𝐴)) |
34 | 33 | biimpri 227 |
. . 3
⊢
(∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) → 𝑧 ∈ ∩ 𝐴) → Tr ∩ 𝐴) |
35 | 32, 34 | e1a 42247 |
. 2
⊢ ( ∀𝑥 ∈ 𝐴 Tr 𝑥 ▶ Tr ∩ 𝐴 ) |
36 | 35 | in1 42191 |
1
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → Tr ∩ 𝐴) |