Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trintALTVD Structured version   Visualization version   GIF version

Theorem trintALTVD 42389
Description: The intersection of a class of transitive sets is transitive. Virtual deduction proof of trintALT 42390. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. trintALT 42390 is trintALTVD 42389 without virtual deductions and was automatically derived from trintALTVD 42389.
1:: (   𝑥𝐴Tr 𝑥   ▶   𝑥𝐴Tr 𝑥   )
2:: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   (𝑧𝑦𝑦 𝐴)   )
3:2: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑧𝑦   )
4:2: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑦 𝐴   )
5:4: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑞𝐴𝑦𝑞   )
6:5: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   (𝑞𝐴𝑦𝑞)   )
7:: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴), 𝑞𝐴   ▶   𝑞𝐴   )
8:7,6: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴), 𝑞𝐴   ▶   𝑦𝑞   )
9:7,1: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴), 𝑞𝐴   ▶   [𝑞 / 𝑥]Tr 𝑥   )
10:7,9: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴), 𝑞𝐴   ▶   Tr 𝑞   )
11:10,3,8: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴), 𝑞𝐴   ▶   𝑧𝑞   )
12:11: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   (𝑞𝐴𝑧𝑞)   )
13:12: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑞(𝑞𝐴𝑧𝑞)   )
14:13: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑞𝐴𝑧𝑞   )
15:3,14: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑧 𝐴   )
16:15: (   𝑥𝐴Tr 𝑥   ▶   ((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴)   )
17:16: (   𝑥𝐴Tr 𝑥   ▶   𝑧𝑦((𝑧 𝑦𝑦 𝐴) → 𝑧 𝐴)   )
18:17: (   𝑥𝐴Tr 𝑥   ▶   Tr 𝐴   )
qed:18: (∀𝑥𝐴Tr 𝑥 → Tr 𝐴)
(Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
trintALTVD (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem trintALTVD
Dummy variables 𝑞 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idn2 42122 . . . . . . 7 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   (𝑧𝑦𝑦 𝐴)   )
2 simpl 482 . . . . . . 7 ((𝑧𝑦𝑦 𝐴) → 𝑧𝑦)
31, 2e2 42140 . . . . . 6 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑧𝑦   )
4 idn3 42124 . . . . . . . . . . 11 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ,   𝑞𝐴   ▶   𝑞𝐴   )
5 idn1 42083 . . . . . . . . . . . 12 (   𝑥𝐴 Tr 𝑥   ▶   𝑥𝐴 Tr 𝑥   )
6 rspsbc 3808 . . . . . . . . . . . 12 (𝑞𝐴 → (∀𝑥𝐴 Tr 𝑥[𝑞 / 𝑥]Tr 𝑥))
74, 5, 6e31 42260 . . . . . . . . . . 11 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ,   𝑞𝐴   ▶   [𝑞 / 𝑥]Tr 𝑥   )
8 trsbc 42049 . . . . . . . . . . . 12 (𝑞𝐴 → ([𝑞 / 𝑥]Tr 𝑥 ↔ Tr 𝑞))
98biimpd 228 . . . . . . . . . . 11 (𝑞𝐴 → ([𝑞 / 𝑥]Tr 𝑥 → Tr 𝑞))
104, 7, 9e33 42243 . . . . . . . . . 10 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ,   𝑞𝐴   ▶   Tr 𝑞   )
11 simpr 484 . . . . . . . . . . . . . 14 ((𝑧𝑦𝑦 𝐴) → 𝑦 𝐴)
121, 11e2 42140 . . . . . . . . . . . . 13 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑦 𝐴   )
13 elintg 4884 . . . . . . . . . . . . . 14 (𝑦 𝐴 → (𝑦 𝐴 ↔ ∀𝑞𝐴 𝑦𝑞))
1413ibi 266 . . . . . . . . . . . . 13 (𝑦 𝐴 → ∀𝑞𝐴 𝑦𝑞)
1512, 14e2 42140 . . . . . . . . . . . 12 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑞𝐴 𝑦𝑞   )
16 rsp 3129 . . . . . . . . . . . 12 (∀𝑞𝐴 𝑦𝑞 → (𝑞𝐴𝑦𝑞))
1715, 16e2 42140 . . . . . . . . . . 11 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   (𝑞𝐴𝑦𝑞)   )
18 pm2.27 42 . . . . . . . . . . 11 (𝑞𝐴 → ((𝑞𝐴𝑦𝑞) → 𝑦𝑞))
194, 17, 18e32 42267 . . . . . . . . . 10 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ,   𝑞𝐴   ▶   𝑦𝑞   )
20 trel 5194 . . . . . . . . . . 11 (Tr 𝑞 → ((𝑧𝑦𝑦𝑞) → 𝑧𝑞))
2120expd 415 . . . . . . . . . 10 (Tr 𝑞 → (𝑧𝑦 → (𝑦𝑞𝑧𝑞)))
2210, 3, 19, 21e323 42275 . . . . . . . . 9 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ,   𝑞𝐴   ▶   𝑧𝑞   )
2322in3 42118 . . . . . . . 8 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   (𝑞𝐴𝑧𝑞)   )
2423gen21 42128 . . . . . . 7 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑞(𝑞𝐴𝑧𝑞)   )
25 df-ral 3068 . . . . . . . 8 (∀𝑞𝐴 𝑧𝑞 ↔ ∀𝑞(𝑞𝐴𝑧𝑞))
2625biimpri 227 . . . . . . 7 (∀𝑞(𝑞𝐴𝑧𝑞) → ∀𝑞𝐴 𝑧𝑞)
2724, 26e2 42140 . . . . . 6 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑞𝐴 𝑧𝑞   )
28 elintg 4884 . . . . . . 7 (𝑧𝑦 → (𝑧 𝐴 ↔ ∀𝑞𝐴 𝑧𝑞))
2928biimprd 247 . . . . . 6 (𝑧𝑦 → (∀𝑞𝐴 𝑧𝑞𝑧 𝐴))
303, 27, 29e22 42180 . . . . 5 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑧 𝐴   )
3130in2 42114 . . . 4 (   𝑥𝐴 Tr 𝑥   ▶   ((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴)   )
3231gen12 42127 . . 3 (   𝑥𝐴 Tr 𝑥   ▶   𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴)   )
33 dftr2 5189 . . . 4 (Tr 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴))
3433biimpri 227 . . 3 (∀𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴) → Tr 𝐴)
3532, 34e1a 42136 . 2 (   𝑥𝐴 Tr 𝑥   ▶   Tr 𝐴   )
3635in1 42080 1 (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537  wcel 2108  wral 3063  [wsbc 3711   cint 4876  Tr wtr 5187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-v 3424  df-sbc 3712  df-in 3890  df-ss 3900  df-uni 4837  df-int 4877  df-tr 5188  df-vd1 42079  df-vd2 42087  df-vd3 42099
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator