Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trintALTVD Structured version   Visualization version   GIF version

Theorem trintALTVD 44920
Description: The intersection of a class of transitive sets is transitive. Virtual deduction proof of trintALT 44921. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. trintALT 44921 is trintALTVD 44920 without virtual deductions and was automatically derived from trintALTVD 44920.
1:: (   𝑥𝐴Tr 𝑥   ▶   𝑥𝐴Tr 𝑥   )
2:: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   (𝑧𝑦𝑦 𝐴)   )
3:2: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑧𝑦   )
4:2: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑦 𝐴   )
5:4: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑞𝐴𝑦𝑞   )
6:5: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   (𝑞𝐴𝑦𝑞)   )
7:: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴), 𝑞𝐴   ▶   𝑞𝐴   )
8:7,6: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴), 𝑞𝐴   ▶   𝑦𝑞   )
9:7,1: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴), 𝑞𝐴   ▶   [𝑞 / 𝑥]Tr 𝑥   )
10:7,9: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴), 𝑞𝐴   ▶   Tr 𝑞   )
11:10,3,8: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴), 𝑞𝐴   ▶   𝑧𝑞   )
12:11: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   (𝑞𝐴𝑧𝑞)   )
13:12: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑞(𝑞𝐴𝑧𝑞)   )
14:13: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑞𝐴𝑧𝑞   )
15:3,14: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑧 𝐴   )
16:15: (   𝑥𝐴Tr 𝑥   ▶   ((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴)   )
17:16: (   𝑥𝐴Tr 𝑥   ▶   𝑧𝑦((𝑧 𝑦𝑦 𝐴) → 𝑧 𝐴)   )
18:17: (   𝑥𝐴Tr 𝑥   ▶   Tr 𝐴   )
qed:18: (∀𝑥𝐴Tr 𝑥 → Tr 𝐴)
(Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
trintALTVD (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem trintALTVD
Dummy variables 𝑞 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idn2 44654 . . . . . . 7 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   (𝑧𝑦𝑦 𝐴)   )
2 simpl 482 . . . . . . 7 ((𝑧𝑦𝑦 𝐴) → 𝑧𝑦)
31, 2e2 44672 . . . . . 6 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑧𝑦   )
4 idn3 44656 . . . . . . . . . . 11 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ,   𝑞𝐴   ▶   𝑞𝐴   )
5 idn1 44615 . . . . . . . . . . . 12 (   𝑥𝐴 Tr 𝑥   ▶   𝑥𝐴 Tr 𝑥   )
6 rspsbc 3825 . . . . . . . . . . . 12 (𝑞𝐴 → (∀𝑥𝐴 Tr 𝑥[𝑞 / 𝑥]Tr 𝑥))
74, 5, 6e31 44791 . . . . . . . . . . 11 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ,   𝑞𝐴   ▶   [𝑞 / 𝑥]Tr 𝑥   )
8 trsbc 44581 . . . . . . . . . . . 12 (𝑞𝐴 → ([𝑞 / 𝑥]Tr 𝑥 ↔ Tr 𝑞))
98biimpd 229 . . . . . . . . . . 11 (𝑞𝐴 → ([𝑞 / 𝑥]Tr 𝑥 → Tr 𝑞))
104, 7, 9e33 44774 . . . . . . . . . 10 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ,   𝑞𝐴   ▶   Tr 𝑞   )
11 simpr 484 . . . . . . . . . . . . . 14 ((𝑧𝑦𝑦 𝐴) → 𝑦 𝐴)
121, 11e2 44672 . . . . . . . . . . . . 13 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑦 𝐴   )
13 elintg 4903 . . . . . . . . . . . . . 14 (𝑦 𝐴 → (𝑦 𝐴 ↔ ∀𝑞𝐴 𝑦𝑞))
1413ibi 267 . . . . . . . . . . . . 13 (𝑦 𝐴 → ∀𝑞𝐴 𝑦𝑞)
1512, 14e2 44672 . . . . . . . . . . . 12 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑞𝐴 𝑦𝑞   )
16 rsp 3220 . . . . . . . . . . . 12 (∀𝑞𝐴 𝑦𝑞 → (𝑞𝐴𝑦𝑞))
1715, 16e2 44672 . . . . . . . . . . 11 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   (𝑞𝐴𝑦𝑞)   )
18 pm2.27 42 . . . . . . . . . . 11 (𝑞𝐴 → ((𝑞𝐴𝑦𝑞) → 𝑦𝑞))
194, 17, 18e32 44798 . . . . . . . . . 10 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ,   𝑞𝐴   ▶   𝑦𝑞   )
20 trel 5204 . . . . . . . . . . 11 (Tr 𝑞 → ((𝑧𝑦𝑦𝑞) → 𝑧𝑞))
2120expd 415 . . . . . . . . . 10 (Tr 𝑞 → (𝑧𝑦 → (𝑦𝑞𝑧𝑞)))
2210, 3, 19, 21e323 44806 . . . . . . . . 9 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ,   𝑞𝐴   ▶   𝑧𝑞   )
2322in3 44650 . . . . . . . 8 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   (𝑞𝐴𝑧𝑞)   )
2423gen21 44660 . . . . . . 7 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑞(𝑞𝐴𝑧𝑞)   )
25 df-ral 3048 . . . . . . . 8 (∀𝑞𝐴 𝑧𝑞 ↔ ∀𝑞(𝑞𝐴𝑧𝑞))
2625biimpri 228 . . . . . . 7 (∀𝑞(𝑞𝐴𝑧𝑞) → ∀𝑞𝐴 𝑧𝑞)
2724, 26e2 44672 . . . . . 6 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑞𝐴 𝑧𝑞   )
28 elintg 4903 . . . . . . 7 (𝑧𝑦 → (𝑧 𝐴 ↔ ∀𝑞𝐴 𝑧𝑞))
2928biimprd 248 . . . . . 6 (𝑧𝑦 → (∀𝑞𝐴 𝑧𝑞𝑧 𝐴))
303, 27, 29e22 44712 . . . . 5 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑧 𝐴   )
3130in2 44646 . . . 4 (   𝑥𝐴 Tr 𝑥   ▶   ((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴)   )
3231gen12 44659 . . 3 (   𝑥𝐴 Tr 𝑥   ▶   𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴)   )
33 dftr2 5198 . . . 4 (Tr 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴))
3433biimpri 228 . . 3 (∀𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴) → Tr 𝐴)
3532, 34e1a 44668 . 2 (   𝑥𝐴 Tr 𝑥   ▶   Tr 𝐴   )
3635in1 44612 1 (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539  wcel 2111  wral 3047  [wsbc 3736   cint 4895  Tr wtr 5196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-v 3438  df-sbc 3737  df-ss 3914  df-uni 4857  df-int 4896  df-tr 5197  df-vd1 44611  df-vd2 44619  df-vd3 44631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator