Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e3bi Structured version   Visualization version   GIF version

Theorem e3bi 42317
Description: Biconditional form of e3 42316. syl8ib 255 is e3bi 42317 without virtual deductions. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e3bi.1 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   )
e3bi.2 (𝜃𝜏)
Assertion
Ref Expression
e3bi (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜏   )

Proof of Theorem e3bi
StepHypRef Expression
1 e3bi.1 . 2 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   )
2 e3bi.2 . . 3 (𝜃𝜏)
32biimpi 215 . 2 (𝜃𝜏)
41, 3e3 42316 1 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜏   )
Colors of variables: wff setvar class
Syntax hints:  wb 205  (   wvd3 42166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-vd3 42169
This theorem is referenced by:  en3lplem2VD  42423
  Copyright terms: Public domain W3C validator