Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ee221 Structured version   Visualization version   GIF version

Theorem ee221 41276
Description: e221 41275 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
ee221.1 (𝜑 → (𝜓𝜒))
ee221.2 (𝜑 → (𝜓𝜃))
ee221.3 (𝜑𝜏)
ee221.4 (𝜒 → (𝜃 → (𝜏𝜂)))
Assertion
Ref Expression
ee221 (𝜑 → (𝜓𝜂))

Proof of Theorem ee221
StepHypRef Expression
1 ee221.1 . 2 (𝜑 → (𝜓𝜒))
2 ee221.2 . 2 (𝜑 → (𝜓𝜃))
3 ee221.3 . . 3 (𝜑𝜏)
43a1d 25 . 2 (𝜑 → (𝜓𝜏))
5 ee221.4 . 2 (𝜒 → (𝜃 → (𝜏𝜂)))
61, 2, 4, 5ee222 41128 1 (𝜑 → (𝜓𝜂))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator